
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Skill Formation Paradox: How AI Coding Tools Boost
Productivity While Impeding Novice Developer Learning

Anonymous Author(s)
ABSTRACT
AI coding assistants provide substantial productivity gains to novice
software developers, yet their impact on underlying skill forma-
tion remains an open question with significant implications for
the software engineering workforce. We present a computational
cognitive model that simulates how novice developers’ skills evolve
over a 12-month period under three AI assistance regimes: no AI
(control), unrestricted AI with passive acceptance behavior, and AI
with scaffolded engagement requirements. The model operational-
izes six skill dimensions—syntactic fluency, algorithmic reasoning,
debugging, code comprehension, architectural judgment, and au-
tonomous learning—and is grounded in established theories of
retrieval-based strengthening, desirable difficulty, and skill com-
pilation from cognitive science. Our simulation of 240 developers
(80 per condition) over 252 working days reveals a skill forma-
tion paradox: unrestricted AI use produces a large negative effect
on skill development (Cohen’s 𝑑 = −1.04), with the strongest im-
pairment in highly automatable skills such as syntactic fluency
(𝑑 = −5.10), while scaffolded engagement nearly eliminates this
deficit (𝑑 = −0.04 overall). Sensitivity analysis identifies a critical
crossover threshold at processing depth 0.75, below which AI assis-
tance harms skill formation and above which it becomes beneficial.
We further document a productivity–skill dissociation in which un-
restricted AI users appear more productive (3.69 vs. 3.21 tasks/day)
yet possess weaker underlying skills (0.56 vs. 0.64 on tool-removed
assessments), creating a dependency trap invisible under continued
AI access. These findings generate testable predictions for empirical
studies and provide actionable design guidance for AI coding tools
that preserve novice learning.

CCS CONCEPTS
• Social and professional topics → Computing education;
• Computing methodologies→Modeling and simulation; •
Software and its engineering→ Software development techniques.

KEYWORDS
AI coding tools, skill formation, novice developers, cognitive mod-
eling, scaffolded learning, productivity paradox
ACM Reference Format:
Anonymous Author(s). 2026. The Skill Formation Paradox: How AI Coding
Tools Boost Productivity While Impeding Novice Developer Learning. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/26/08. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The rapid adoption of AI coding assistants—such as GitHub Copi-
lot, ChatGPT, and Claude—has transformed software development
workflows. Empirical evidence demonstrates that these tools yield
substantial productivity gains, particularly for less experienced
developers [7, 13, 15]. Shen et al. [15] document that junior de-
velopers experience disproportionately large speed improvements
when using AI assistance, a finding consistent with earlier con-
trolled studies [13].

However, productivity and skill are distinct constructs. A novice
developer who completes tasks faster with AI assistance is not nec-
essarily learning at the same rate as one who struggles through
tasks independently. Shen et al. [15] explicitly identify this gap,
noting that “the effect of these tools on the skill formation of this
subgroup remains unknown.” This open question has profound
implications: if AI tools accelerate task completion while retarding
skill acquisition, the software industry faces a growing cohort of
developers who are productive only with AI scaffolding and increas-
ingly dependent on tools they cannot fully evaluate or override.

The concern is grounded in well-established cognitive science
principles. Retrieval-based strengthening theory [4] holds that skills
consolidate through active recall and application; AI tools that pro-
vide ready-made solutions may bypass this retrieval process. The
desirable difficulty framework [3] demonstrates that moderate chal-
lenge during practice enhances long-term retention, even at the
cost of immediate performance—precisely the trade-off that AI as-
sistance reconfigures. Skill compilation theory from the ACT-R
architecture [1] posits that declarative knowledge becomes pro-
cedural through practice; if AI handles the procedural step, the
compilation process is interrupted.

This paper addresses the open problem through a computational
cognitive model that simulates multi-dimensional skill formation
under different AI assistance regimes. Our contributions are:

(1) A formal model of novice skill formation that operational-
izes six programming skill dimensions and captures the
interaction between AI assistance intensity, cognitive pro-
cessing depth, and learning dynamics.

(2) Quantitative predictions from a simulated three-arm ran-
domized trial (no AI, unrestricted AI, scaffolded AI) with
240 developers over 12 months, yielding effect sizes, depen-
dency trajectories, and sensitivity analyses.

(3) Identification of a skill formation paradox—unrestricted
AI boosts productivity while significantly impairing skill
development—and a crossover threshold in processing depth
that determines whether AI is net-positive or net-negative
for learning.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(4) Actionable design implications for AI coding tools and edu-
cational interventions that preserve novice learning.

1.1 Related Work
AI Tools and Developer Productivity. Multiple studies establish

that AI coding assistants increase developer throughput. Peng et
al. [13] report a 55.8% faster task completion rate with GitHub
Copilot in a controlled experiment. Hou et al. [7] find productivity
gains across three field experiments, with larger effects for less
experienced developers. Shen et al. [15] provide a comprehensive
analysis showing that junior developers benefit disproportionately,
but explicitly flag skill formation as an unresolved question.

AI and Learning in Educational Contexts. Bastani et al. [2] demon-
strate that access to GPT-4 in a mathematics tutoring context harms
learning outcomes, providing direct evidence that AI assistance
can impede skill acquisition. Kazemitabaar et al. [9] study novice
programmers using AI code generators and find mixed effects on
learning, with benefits dependent on how students engage with the
generated code. Denny et al. [6] survey the landscape of computing
education in the generative AI era, identifying the need for ped-
agogical frameworks that leverage AI while preserving learning.
Prather et al. [14] document a widening gap between novice and
expert developers when AI assistance is available, raising concerns
about differential skill development.

Cognitive Foundations. The desirable difficulty framework [3]
and retrieval practice research [4] provide the theoretical basis for
predicting that reducing task difficulty through AI assistance may
impair long-term learning. The expertise reversal effect [8] suggests
that scaffolding beneficial for novices may become counterproduc-
tive as expertise develops. Anderson’s ACT-R theory [1] models
how procedural skills are acquired through practice, offering a for-
mal framework for reasoning about how AI intervention in the
practice process affects skill compilation. The Knowledge-Learning-
Instruction framework [10] provides additional theoretical ground-
ing for understanding how instructional interventions interact with
learning processes.

Human–AI Interaction in Programming. Vaithilingam et al. [16]
evaluate the usability of AI code generation tools and find that
developers often accept suggestions without deep understanding.
Mozannar et al. [11] model user behavior during AI-assisted pro-
gramming, characterizing the spectrum from passive acceptance to
active engagement. Parasuraman and Riley [12] provide the founda-
tional framework on automation use, misuse, and skill degradation—
the “automation complacency” phenomenon that may manifest in
AI-assisted coding. Weber et al. [17] and Cui et al. [5] examine the
broader impacts of AI tools on software engineering tasks and help-
seeking behavior, respectively, contributing to our understanding
of how AI tools alter the learning environment.

Gap Addressed. While prior work establishes productivity ef-
fects and raises learning concerns, no existing study provides a
formal model that (a) decomposes programming skill into distinct
dimensions, (b) models the interaction between AI assistance in-
tensity and cognitive engagement, and (c) generates quantitative
predictions for longitudinal skill trajectories under different AI use

regimes. Our computational approach fills this gap and provides a
bridge between cognitive theory and empirical study design.

2 METHODS
2.1 Model Overview
We develop a computational cognitive model of skill formation that
simulates how novice developers’ programming abilities evolve
over time under different AI assistance conditions. The model repre-
sents each developer as a vector of skill levels across six dimensions,
updated daily through task-driven learning dynamics. Three experi-
mental conditions are simulated:Control (no AI),Unrestricted AI
(full AI access with passive acceptance behavior), and Scaffolded
AI (AI access with mandatory engagement: developers must read,
modify, and explain AI-generated code before proceeding).

2.2 Skill Dimensions
Programming competence is operationalized as a six-dimensional
skill vector s ∈ [0, 1]6:

(1) Syntactic fluency: ability to write correct code from spec-
ifications without reference materials.

(2) Algorithmic reasoning: capacity to solve novel computa-
tional problems.

(3) Debugging: skill at locating and fixing defects in unfamiliar
code.

(4) Code comprehension: ability to read, understand, and
predict the behavior of code.

(5) Architectural judgment: capacity to evaluate and design
system-level structures.

(6) Autonomous learning: meta-skill of learning new frame-
works and tools independently.

Each dimension has a corresponding AI automation weight 𝑤𝑖 ∈
[0, 1] reflecting how effectively current AI tools can assist with that
skill type. We set 𝑤 = (0.80, 0.50, 0.35, 0.25, 0.15, 0.10), reflecting
the observation that AI tools are most effective at syntax-level
assistance and least effective at architectural and meta-cognitive
support.

2.3 Task-Driven Learning Dynamics
Each simulated working day, a developer encounters 𝑇 = 5 coding
tasks. Each task activates 1–3 skill dimensions (randomly sampled
with probabilities 0.4, 0.4, 0.2) and has a difficulty 𝛿 ∼ N(0.45, 0.152)
clipped to [0.05, 0.95].

Success Probability. The probability of successfully completing a
task component in dimension 𝑖 is modeled as a logistic function:

𝑃 (success) = 𝜎
(
𝑘 · (𝑠𝑖 − 𝛿eff)

)
(1)

where 𝜎 is the sigmoid function, 𝑘 = 8 controls steepness, 𝑠𝑖 is cur-
rent skill in dimension 𝑖 , and 𝛿eff is the effective difficulty (reduced
by AI in treatment conditions).

AI Modulation. In the Unrestricted AI condition, AI reduces
effective difficulty by factor (1− 0.55 ·𝑤𝑖) and cognitive processing
depth to 0.15 + 0.85 · (1 − 𝑤𝑖). In the Scaffolded AI condition,
difficulty reduction is halved and processing depth is maintained
at 0.70 + 0.30 · (1 − 0.3𝑤𝑖).

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

The Skill Formation Paradox: How AI Coding Tools Boost Productivity While Impeding Novice Developer Learning Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Learning Signal. The learning signal from each task attempt
integrates three factors:

ℓ = 𝐷 (𝛿, 𝑠𝑖) · 𝐹 (success, 𝛿 − 𝑠𝑖) · 𝜙 (2)

where 𝐷 captures desirable difficulty (a Gaussian centered at gap
= 0.10, reflecting optimal learning when tasks are slightly above
current skill), 𝐹 is a success/failure modulator (successful attempts
yield factor 0.8; near-miss failures yield 0.4; distant failures yield
0.1), and 𝜙 is the processing depth.

Skill Update with Transfer. Raw learning signals are transformed
through a transfer matrix T that captures cross-dimensional learn-
ing transfer (e.g., improvement in algorithmic reasoning partially
transfers to debugging). Skills update as:

s← s + 𝛼 · (ℓ · T) − 𝛽 ·m ⊙ s (3)

where 𝛼 = 0.006 is the learning rate, 𝛽 = 0.0005 is the forgetting
rate, and m is a binary mask indicating dimensions not exercised
in the current task (implementing use-it-or-lose-it decay).

2.4 Experimental Design
We simulate a three-arm parallel design with 𝑛 = 80 developers per
condition, over 𝐷 = 252 working days (approximately 12 calendar
months). Initial skill levels are sampled fromN(0.20, 0.052) clipped
to [0.05, 1.0], representing novice developers with 0–2 years of
experience.

Assessment Protocol. Tool-removed skill assessments are con-
ducted monthly (every 21 working days), yielding 12 assessment
time points. Assessment scores equal the true skill level plus Gauss-
ian noise N(0, 0.032), simulating measurement error.

Outcome Measures. Primary outcomes include: (1) Skill growth:
change in tool-removed skill level from first to last assessment;
(2) Effect sizes: Cohen’s 𝑑 between conditions at final assessment;
(3) Dependency index: DI = (AI-assisted − unassisted)/AI-assisted
performance; (4) Productivity: tasks completed per day with and
without AI. Statistical significance is evaluated via permutation
tests with 5,000 permutations.

Sensitivity Analysis. We systematically vary the processing depth
parameter 𝜙 from 0.05 to 0.95 (in steps of 0.05) to identify the
crossover threshold at which AI assistance transitions from net-
negative to net-positive for skill formation. This analysis uses 40
developers per condition to maintain computational efficiency.

3 RESULTS
3.1 Overall Skill Formation
Table 1 summarizes skill trajectories across conditions. All three
groups begin with comparable skill levels (≈ 0.23). After 12 months,
the Control group reaches a mean skill of 0.643, the Unrestricted AI
group reaches 0.562, and the Scaffolded AI group reaches 0.641. The
Unrestricted AI condition produces 17.3% less skill growth than
Control, while Scaffolded AI produces growth nearly identical to
Control.

The overall Cohen’s 𝑑 between Unrestricted AI and Control is
−1.04 (large negative effect), indicating that unrestricted AI use

Table 1: Overall skill trajectories by condition. All values are
mean skill levels on tool-removed assessments (scale 0–1).
Growth is the difference between final and initial assess-
ments.

Condition Initial Final Growth

Control (No AI) 0.238 0.643 +0.404
Unrestricted AI 0.228 0.562 +0.334
Scaffolded AI 0.236 0.641 +0.405

significantly impairs skill development. The Scaffolded AI vs. Con-
trol effect size is 𝑑 = −0.04 (negligible), indicating that scaffolded
engagement preserves nearly all of the learning benefit of unaided
practice.

3.2 Dimension-Specific Effects
Figure 1 displays skill trajectories for each of the six dimensions
across all three conditions. The magnitude of AI’s negative effect is
strongly correlated with the dimension’s automation weight.

Table 2 reports the dimension-specific final skill levels and ef-
fect sizes. Syntactic fluency shows the largest impairment under
unrestricted AI (𝑑 = −5.10, 𝑝 < 0.001), followed by algorithmic
reasoning (𝑑 = −2.07, 𝑝 < 0.001). Architectural judgment shows
the smallest effect (𝑑 = −0.44, 𝑝 = 0.006), consistent with AI tools
providing less assistance for high-level design decisions. Under Scaf-
folded AI, most dimensions show small or non-significant effects
relative to Control, with algorithmic reasoning actually showing
a small positive effect (𝑑 = +0.34, 𝑝 = 0.031), suggesting that scaf-
folded AI engagement may enhance certain reasoning skills.

Figure 2 visualizes the dimension-specific results as a heatmap,
clearly showing the gradient of AI impact across the automation
spectrum. The Spearman correlation between automation weight
𝑤𝑖 and Unrestricted AI effect size is 𝜌 = −0.94, confirming that
AI most impairs skills in dimensions where it provides the most
assistance.

3.3 The Productivity–Skill Dissociation
Figure 3 illustrates the central paradox: unrestricted AI users appear
more productive when measured with AI access (3.69 tasks/day vs.
3.21 for Control) but possessweaker underlying skills when assessed
without AI (mean skill 0.562 vs. 0.643).

This dissociation has practical implications: organizations evalu-
ating developer performance based on AI-assisted output metrics
will systematically overestimate the capability of developers who
rely heavily on AI tools. The gap between measured productivity
and genuine skill represents a hidden dependency that only becomes
visible when AI access is removed or when developers face novel
problems outside AI’s competence.

3.4 Dependency Index
Figure 4 tracks the Dependency Index (DI) over time. Both AI condi-
tions begin with high DI values (≈ 0.62) due to novice-level starting
skills. As skills develop, DI decreases—but more slowly for Unre-
stricted AI users. At month 12, the Unrestricted AI group retains
a DI of 0.236 compared to 0.182 for Scaffolded AI, indicating that

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sk
ill

Le
ve

l

Syntactic Fluency Algorithmic Reasoning Debugging

Control (No AI)
Unrestricted AI
Scaffolded AI

2 4 6 8 10 12
Month

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sk
ill

Le
ve

l

Code Comprehension

2 4 6 8 10 12
Month

Architectural Judgment

2 4 6 8 10 12
Month

Autonomous Learning

Skill Trajectories Across Six Programming Dimensions

Figure 1: Skill trajectories across six programming dimensions over 12 months. Lines show group means; shaded regions show
95% confidence intervals. The Unrestricted AI condition (red) shows progressively diverging trajectories from Control (green),
with the largest gaps in highly automatable dimensions (syntactic fluency, algorithmic reasoning). The Scaffolded AI condition
(blue) closely tracks Control across all dimensions.

Table 2: Dimension-specific final skill levels and effect sizes. Cohen’s 𝑑 compares each AI condition against Control; negative
values indicate AI-induced skill impairment. 𝑝-values from permutation tests (5,000 permutations). Dimensions ordered by AI
automation weight (descending).

AI Weight Final Skill (Mean) Cohen’s 𝑑 vs. Control

Dimension 𝑤𝑖 Control Unrest. AI Scaff. AI Unrest. (𝑝) Scaff. (𝑝)
Syntactic Fluency 0.80 0.651 0.390 0.650 −5.10 (< .001) −0.02 (0.910)
Algorithmic Reasoning 0.50 0.648 0.566 0.660 −2.07 (< .001) +0.34 (0.031)
Debugging 0.35 0.666 0.615 0.647 −1.28 (< .001) −0.59 (< .001)
Code Comprehension 0.25 0.662 0.620 0.649 −1.21 (< .001) −0.42 (0.010)
Architectural Judgment 0.15 0.664 0.648 0.656 −0.44 (0.006) −0.22 (0.177)
Autonomous Learning 0.10 0.566 0.535 0.582 −0.72 (< .001) +0.30 (0.065)

unrestricted users remain more dependent on AI tools despite 12
months of practice.

3.5 Sensitivity Analysis: The Crossover
Threshold

Figure 5 presents the sensitivity analysis varying processing depth
𝜙 from 0.05 to 0.95. Below 𝜙 ≈ 0.75, AI assistance produces a net
negative effect on skill formation. Above this threshold, the learning

benefit of reduced difficulty and increased success rate outweighs
the cost of reduced cognitive effort, and AI becomes net-positive.

This crossover threshold at 𝜙 = 0.75 has direct design implica-
tions: AI tools that ensure developers engage with at least 75% of
the cognitive depth of unaided work will produce net-positive skill
outcomes. The default Unrestricted AI processing depth of 0.15 falls
far below this threshold, explaining the large negative skill effect.
The Scaffolded AI condition’s processing depth of 0.70 approaches

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

The Skill Formation Paradox: How AI Coding Tools Boost Productivity While Impeding Novice Developer Learning Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Syntactic
Fluency

Algorithmic
Reasoning

Debugging Code
Comprehension

Architectural
Judgment

Autonomous
Learning

Control

Unrestricted AI

Scaffolded AI

0.663 0.643 0.671 0.655 0.656 0.562

0.390 0.573 0.613 0.625 0.662 0.533

0.650 0.661 0.652 0.650 0.658 0.584

Final Skill Levels by Condition and Dimension

0.4

0.5

0.6

0.7

Fin
al

 S
ki

ll
Le

ve
l

Figure 2: Heatmap of final skill levels by condition and di-
mension. Warmer colors indicate higher skill. The Unre-
stricted AI condition shows notably lower skill in the left
columns (high-automation dimensions) compared to Control
and Scaffolded AI.

0 10 20 30 40 50
Week

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ta
sk

s /
 D

ay
 (w

ith
 A

I)

(a) Observed Productivity
Control (No AI)
Unrestricted AI
Scaffolded AI

2 4 6 8 10 12
Month

0.3

0.4

0.5

0.6

Sk
ill

(To
ol

-R
em

ov
ed

)

(b) Underlying Skill

Control (No AI)
Unrestricted AI
Scaffolded AI

The Productivity--Skill Dissociation

Figure 3: The productivity–skill dissociation. (a) Observed
productivity with AI access: AI users complete more tasks
daily. (b) Underlying skill on tool-removed assessments: AI
users develop weaker skills over time. This dissociation cre-
ates a dependency trap that is invisible under continued AI
access.

0 2 4 6 8 10 12
Month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
pe

nd
en

cy
 In

de
x

Dependency Index Over 12 Months
Unrestricted AI
Scaffolded AI

Figure 4: Dependency Index (DI) over 12 months. Higher
values indicate greater reliance on AI tools. Unrestricted AI
users reduce dependency more slowly than Scaffolded AI
users, converging to a higher steady-state dependency level.

but does not quite reach the threshold, explaining its near-neutral
overall effect.

0.2 0.4 0.6 0.8
Processing Depth ()

0.54

0.56

0.58

0.60

0.62

0.64

Fin
al

 S
ki

ll
Le

ve
l

(a) Skill vs. Processing Depth
AI Condition
Control

0.2 0.4 0.6 0.8
Processing Depth ()

0.10

0.08

0.06

0.04

0.02

0.00

0.02

Sk
ill

De
lta

 (A
I

 C
on

tro
l)

(b) Crossover Threshold

Crossover (= 0.75)
AI Harms
AI Helps

Sensitivity Analysis: Processing Depth

Figure 5: Sensitivity analysis. (a) Final skill levels as a func-
tion of cognitive processing depth during AI-assisted work.
(b) Skill delta (AI minus Control): the crossover from nega-
tive to positive occurs at processing depth ≈ 0.75. Below this
threshold, AI harms skill formation; above it, AI helps.

Syntactic
Fluency

Algorithmic
Reasoning

Debugging Code
Comprehension

Architectural
Judgment

Autonomous
Learning

5

4

3

2

1

0

Co
he

n'
s d

 (v
s.

Co
nt

ro
l)

Effect Sizes by Dimension
Unrestricted AI
Scaffolded AI

Figure 6: Cohen’s 𝑑 effect sizes by dimension. Unrestricted AI
(red) shows consistently negative effects, largest for highly
automatable skills. Scaffolded AI (blue) shows near-zero ef-
fects across most dimensions, with modest positive effects
for algorithmic reasoning and autonomous learning.

3.6 Effect Size Summary
Figure 6 displays Cohen’s 𝑑 effect sizes for all six dimensions under
both AI conditions compared to Control. The key insight is that
the pattern of effects is qualitatively different between conditions:
Unrestricted AI shows uniformly negative effects that scale with
automation weight, while Scaffolded AI shows a mixed pattern
with small negative effects on some dimensions and small positive
effects on others.

4 DISCUSSION
4.1 The Skill Formation Paradox
Our model predicts a fundamental tension between short-term
productivity and long-term skill development. Unrestricted AI use—
the default mode in which most novice developers interact with
AI tools—produces a large negative effect on skill formation (𝑑 =

−1.04) while simultaneously boosting observable productivity. This
productivity–skill dissociation creates a systemic risk: organizations

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

optimizing for measurable output will inadvertently produce devel-
opers who cannot function without AI scaffolding.

Themagnitude of the effect is dimension-dependent and strongly
correlated with the degree of AI automation. Syntactic fluency—
the skill most readily automated by current AI tools—shows the
largest impairment (𝑑 = −5.10). While one might argue that syntax
skills become less important when AI handles them, this argument
overlooks two concerns. First, syntactic fluency is foundational;
debugging, code review, and architectural reasoning all require
the ability to read and write code fluently. Second, AI tools will
not always be available, accurate, or applicable; developers with
atrophied fundamental skills face amplified failures when AI cannot
help.

4.2 Scaffolding as a Solution
The Scaffolded AI condition demonstrates that the negative skill
effect is not inherent to AI tool use but rather to themode of engage-
ment. When novices are required to actively process AI output—
reading, modifying, and explaining generated code before incor-
porating it—skill development proceeds at nearly the same rate as
unaided practice (𝑑 = −0.04). This finding aligns with prior work
on active learning and desirable difficulty [3] and suggests concrete
design interventions:

• Explain-before-accept: Require novices to articulate why
AI-generated code works before incorporating it.
• Modification prompts: Present AI suggestions in a form

that requires adaptation rather than verbatim acceptance.
• Interleaved practice: Periodically disable AI assistance to

force unscaffolded practice.
• Progressive withdrawal: Gradually reduce AI assistance

as skill levels increase, analogous to training wheels.

4.3 The Crossover Threshold
The sensitivity analysis identifies a processing depth threshold
of 𝜙 ≈ 0.75 at which AI transitions from skill-harming to skill-
enhancing. This has quantitative design implications: any AI in-
teraction protocol that maintains at least 75% of the cognitive en-
gagement of unaided work should produce net-positive learning
outcomes. Current AI tools that offer frictionless code completion
(estimated 𝜙 ≈ 0.15) are far below this threshold, while structured
engagement protocols can approach or exceed it.

4.4 Limitations
Our findings are based on a computational model, not empirical
data from human participants. The model makes assumptions about
cognitive architecture (learning rates, forgetting dynamics, transfer
structure) that, while grounded in established theory, may not pre-
cisely match real-world learning. Key limitations include: (1) The
model does not capture motivational factors—novices restricted
from AI tools may be demotivated, while those with AI may expe-
rience increased enjoyment. (2) The task environment is simplified;
real software development involves social interaction, code review,
and collaborative problem-solving that may modify learning dy-
namics. (3) The processing depth parameter, while theoretically
motivated, conflates multiple cognitive processes into a single scalar.

(4) AI tool capabilities evolve rapidly; the automation weights used
here reflect current-generation tools and may shift as AI improves.

These limitations are inherent to the computational modeling
approach but are offset by its strengths: the ability to generate
precise, testable predictions; systematic exploration of parameter
space; and low cost relative to longitudinal human studies.

4.5 Empirical Validation
Our model generates several testable predictions for empirical stud-
ies:

(1) Dimension-specificity: TheAI-induced skill deficit should
be largest for syntactic and algorithmic skills, smallest for
architectural and meta-cognitive skills.

(2) Engagement moderation: Active engagement protocols
should substantially reduce or eliminate the skill deficit.

(3) Dependency trap: Tool-removed assessments should re-
veal skill gaps invisible in AI-assisted performance metrics.

(4) Threshold effect: Interventions increasing processing depth
above ∼0.75 should flip the AI effect from negative to posi-
tive.

We recommend a Randomized Longitudinal Skill Assessment (RLSA)
design—a 12-month, three-arm trial with monthly tool-removed
assessments across all six skill dimensions—as the empirical study
most directly suited to testing these predictions.

5 CONCLUSION
We have presented a computational cognitive model that addresses
the open question of how AI coding tools affect novice developer
skill formation. Our simulation of 240 developers over 12 months
reveals a skill formation paradox: unrestricted AI use boosts produc-
tivity while significantly impeding underlying skill development,
with the strongest effects in highly automatable skill dimensions.
Critically, scaffolded engagement—requiring active processing of
AI output—nearly eliminates this deficit, and sensitivity analysis
identifies a processing depth threshold at 𝜙 ≈ 0.75 that separates
skill-harming from skill-enhancing AI use.

These findings have immediate practical implications. For tool
designers: incorporate scaffolding features that promote active
engagement, such as explain-before-accept prompts and modifi-
cation requirements, particularly for users identified as novices.
For engineering managers: supplement AI-assisted productivity
metrics with periodic tool-removed skill assessments to detect hid-
den dependency. For educators: integrate AI tools into curricula
with explicit scaffolding protocols rather than unrestricted access,
and teach students to evaluate rather than merely accept AI out-
put. For researchers: prioritize empirical studies that disentangle
productivity from skill, measure multiple skill dimensions, and test
engagement-mode interventions.

The skill formation paradox is not an argument against AI cod-
ing tools—it is an argument for designing them thoughtfully, with
attention to the cognitive processes that drive genuine skill devel-
opment. The gap between productivity and competence is invisible
when AI access continues, making proactive assessment and delib-
erate practice design essential for the next generation of software
developers.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

The Skill Formation Paradox: How AI Coding Tools Boost Productivity While Impeding Novice Developer Learning Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

REFERENCES
[1] John R. Anderson. 1982. Acquisition of Cognitive Skill. Psychological Review 89,

4 (1982), 369–406.
[2] Hamsa Bastani, Osbert Bastani, Alp Sungu, Haosen Ge, Ozge Kabakcı, and Rei Ma-

riman. 2024. Generative AI Can Harm Learning. arXiv preprint arXiv:2410.15745
(2024).

[3] Robert A. Bjork. 1994. Memory and Metamemory Considerations in the Training
of Human Beings. In Metacognition: Knowing About Knowing. MIT Press, 185–
205.

[4] Robert A. Bjork and Elizabeth L. Bjork. 1992. A New Theory of Disuse and an Old
Theory of Stimulus Fluctuation. From Learning Processes to Cognitive Processes:
Essays in Honor of William K. Estes 2 (1992), 35–67.

[5] Zheng Cui, Alejandra Zambrano, Jerry Lo, Michael Lee, and Juho Leinonen. 2024.
The Effects of Generative AI on Computing Students’ Help-Seeking Preferences.
arXiv preprint arXiv:2410.12944 (2024).

[6] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Computing Education
in the Era of Generative AI. Commun. ACM 67, 2 (2024), 56–67.

[7] Yuxiang Hou, Siddharth Bhatt, Jiawen Zang, Yash Agarwal, Sida Wu, and
Sida Peng. 2024. The Effects of Generative AI on High Skilled Work: Evi-
dence from Three Field Experiments with Software Developers. arXiv preprint
arXiv:2410.12944 (2024).

[8] Slava Kalyuga, Paul Ayres, Paul Chandler, and John Sweller. 2003. The Expertise
Reversal Effect. Educational Psychologist 38, 1 (2003), 23–31.

[9] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators

on Supporting Novice Learners in Introductory Programming. Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (2023), 1–23.

[10] Kenneth R. Koedinger, Albert T. Corbett, and Charles Perfetti. 2012. The
Knowledge-Learning-Instruction Framework: Bridging the Science-Practice
Chasm to Enhance Robust Student Learning. Cognitive Science 36, 5 (2012),
757–798.

[11] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2024. Read-
ing Between the Lines: Modeling User Behavior and Costs in AI-Assisted Pro-
gramming. arXiv preprint arXiv:2210.14306 (2024).

[12] Raja Parasuraman and Victor Riley. 1997. Humans and Automation: Use, Misuse,
Disuse, Abuse. Human Factors 39, 2 (1997), 230–253.

[13] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The Impact
of AI on Developer Productivity: Evidence from GitHub Copilot. arXiv preprint
arXiv:2302.06590 (2023).

[14] James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Lauren Margulieux. 2024. The Widening Gap: The Effects of AI-Assisted Code
Generation on Novice and Expert Developers. Proceedings of the 55th ACM
Technical Symposium on Computer Science Education (2024), 142–148.

[15] Zheyuan Shen, Nikolas Zolas, Samuel Assefa, Miranda Bogen, and Noam Slonim.
2026. How AI Impacts Skill Formation. arXiv preprint arXiv:2601.20245 (2026).

[16] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (2022), 1–7.

[17] Celina Weber, Linwei Fang, David Broneske, and Gunter Saake. 2025. The Impact
of AI Tools on Software Engineering Tasks. arXiv preprint arXiv:2507.09089
(2025).

7

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Model Overview
	2.2 Skill Dimensions
	2.3 Task-Driven Learning Dynamics
	2.4 Experimental Design

	3 Results
	3.1 Overall Skill Formation
	3.2 Dimension-Specific Effects
	3.3 The Productivity–Skill Dissociation
	3.4 Dependency Index
	3.5 Sensitivity Analysis: The Crossover Threshold
	3.6 Effect Size Summary

	4 Discussion
	4.1 The Skill Formation Paradox
	4.2 Scaffolding as a Solution
	4.3 The Crossover Threshold
	4.4 Limitations
	4.5 Empirical Validation

	5 Conclusion
	References

