23
24
25
26
27
28
29

39
40
41
42
43
44

The Skill Formation Paradox: How Al Coding Tools Boost
Productivity While Impeding Novice Developer Learning

Anonymous Author(s)

ABSTRACT

Al coding assistants provide substantial productivity gains to novice
software developers, yet their impact on underlying skill forma-
tion remains an open question with significant implications for
the software engineering workforce. We present a computational
cognitive model that simulates how novice developers’ skills evolve
over a 12-month period under three Al assistance regimes: no Al
(control), unrestricted Al with passive acceptance behavior, and Al
with scaffolded engagement requirements. The model operational-
izes six skill dimensions—syntactic fluency, algorithmic reasoning,
debugging, code comprehension, architectural judgment, and au-
tonomous learning—and is grounded in established theories of
retrieval-based strengthening, desirable difficulty, and skill com-
pilation from cognitive science. Our simulation of 240 developers
(80 per condition) over 252 working days reveals a skill forma-
tion paradox: unrestricted Al use produces a large negative effect
on skill development (Cohen’s d = —1.04), with the strongest im-
pairment in highly automatable skills such as syntactic fluency
(d = —5.10), while scaffolded engagement nearly eliminates this
deficit (d = —0.04 overall). Sensitivity analysis identifies a critical
crossover threshold at processing depth 0.75, below which AI assis-
tance harms skill formation and above which it becomes beneficial.
We further document a productivity—-skill dissociation in which un-
restricted Al users appear more productive (3.69 vs. 3.21 tasks/day)
yet possess weaker underlying skills (0.56 vs. 0.64 on tool-removed
assessments), creating a dependency trap invisible under continued
Al access. These findings generate testable predictions for empirical
studies and provide actionable design guidance for Al coding tools
that preserve novice learning.

CCS CONCEPTS

« Social and professional topics — Computing education;
« Computing methodologies — Modeling and simulation; «
Software and its engineering — Software development techniques.

KEYWORDS

Al coding tools, skill formation, novice developers, cognitive mod-
eling, scaffolded learning, productivity paradox

ACM Reference Format:
Anonymous Author(s). 2026. The Skill Formation Paradox: How Al Coding
Tools Boost Productivity While Impeding Novice Developer Learning. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/26/08...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The rapid adoption of Al coding assistants—such as GitHub Copi-
lot, ChatGPT, and Claude—has transformed software development
workflows. Empirical evidence demonstrates that these tools yield
substantial productivity gains, particularly for less experienced
developers [7, 13, 15]. Shen et al. [15] document that junior de-
velopers experience disproportionately large speed improvements
when using Al assistance, a finding consistent with earlier con-
trolled studies [13].

However, productivity and skill are distinct constructs. A novice
developer who completes tasks faster with Al assistance is not nec-
essarily learning at the same rate as one who struggles through
tasks independently. Shen et al. [15] explicitly identify this gap,
noting that “the effect of these tools on the skill formation of this
subgroup remains unknown.” This open question has profound
implications: if AI tools accelerate task completion while retarding
skill acquisition, the software industry faces a growing cohort of
developers who are productive only with Al scaffolding and increas-
ingly dependent on tools they cannot fully evaluate or override.

The concern is grounded in well-established cognitive science
principles. Retrieval-based strengthening theory [4] holds that skills
consolidate through active recall and application; Al tools that pro-
vide ready-made solutions may bypass this retrieval process. The
desirable difficulty framework [3] demonstrates that moderate chal-
lenge during practice enhances long-term retention, even at the
cost of immediate performance—precisely the trade-off that Al as-
sistance reconfigures. Skill compilation theory from the ACT-R
architecture [1] posits that declarative knowledge becomes pro-
cedural through practice; if Al handles the procedural step, the
compilation process is interrupted.

This paper addresses the open problem through a computational
cognitive model that simulates multi-dimensional skill formation
under different Al assistance regimes. Our contributions are:

(1) A formal model of novice skill formation that operational-
izes six programming skill dimensions and captures the
interaction between Al assistance intensity, cognitive pro-
cessing depth, and learning dynamics.

(2) Quantitative predictions from a simulated three-arm ran-
domized trial (no Al, unrestricted Al, scaffolded Al) with
240 developers over 12 months, yielding effect sizes, depen-
dency trajectories, and sensitivity analyses.

(3) Identification of a skill formation paradox—unrestricted
Al boosts productivity while significantly impairing skill
development—and a crossover threshold in processing depth
that determines whether Al is net-positive or net-negative
for learning.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

(4) Actionable design implications for Al coding tools and edu-
cational interventions that preserve novice learning.

1.1 Related Work

Al Tools and Developer Productivity. Multiple studies establish
that Al coding assistants increase developer throughput. Peng et
al. [13] report a 55.8% faster task completion rate with GitHub
Copilot in a controlled experiment. Hou et al. [7] find productivity
gains across three field experiments, with larger effects for less
experienced developers. Shen et al. [15] provide a comprehensive
analysis showing that junior developers benefit disproportionately,
but explicitly flag skill formation as an unresolved question.

Al and Learning in Educational Contexts. Bastani et al. [2] demon-
strate that access to GPT-4 in a mathematics tutoring context harms
learning outcomes, providing direct evidence that Al assistance
can impede skill acquisition. Kazemitabaar et al. [9] study novice
programmers using Al code generators and find mixed effects on
learning, with benefits dependent on how students engage with the
generated code. Denny et al. [6] survey the landscape of computing
education in the generative Al era, identifying the need for ped-
agogical frameworks that leverage Al while preserving learning.
Prather et al. [14] document a widening gap between novice and
expert developers when Al assistance is available, raising concerns
about differential skill development.

Cognitive Foundations. The desirable difficulty framework [3]
and retrieval practice research [4] provide the theoretical basis for
predicting that reducing task difficulty through Al assistance may
impair long-term learning. The expertise reversal effect [8] suggests
that scaffolding beneficial for novices may become counterproduc-
tive as expertise develops. Anderson’s ACT-R theory [1] models
how procedural skills are acquired through practice, offering a for-
mal framework for reasoning about how Al intervention in the
practice process affects skill compilation. The Knowledge-Learning-
Instruction framework [10] provides additional theoretical ground-
ing for understanding how instructional interventions interact with
learning processes.

Human—-AI Interaction in Programming. Vaithilingam et al. [16]
evaluate the usability of Al code generation tools and find that
developers often accept suggestions without deep understanding.
Mozannar et al. [11] model user behavior during Al-assisted pro-
gramming, characterizing the spectrum from passive acceptance to
active engagement. Parasuraman and Riley [12] provide the founda-
tional framework on automation use, misuse, and skill degradation—
the “automation complacency” phenomenon that may manifest in
Al-assisted coding. Weber et al. [17] and Cui et al. [5] examine the
broader impacts of Al tools on software engineering tasks and help-
seeking behavior, respectively, contributing to our understanding
of how Al tools alter the learning environment.

Gap Addressed. While prior work establishes productivity ef-
fects and raises learning concerns, no existing study provides a
formal model that (a) decomposes programming skill into distinct
dimensions, (b) models the interaction between Al assistance in-
tensity and cognitive engagement, and (c) generates quantitative
predictions for longitudinal skill trajectories under different Al use

Anon.

regimes. Our computational approach fills this gap and provides a
bridge between cognitive theory and empirical study design.

2 METHODS
2.1 Model Overview

We develop a computational cognitive model of skill formation that
simulates how novice developers’ programming abilities evolve
over time under different Al assistance conditions. The model repre-
sents each developer as a vector of skill levels across six dimensions,
updated daily through task-driven learning dynamics. Three experi-
mental conditions are simulated: Control (no Al), Unrestricted Al
(full AT access with passive acceptance behavior), and Scaffolded
AI (AT access with mandatory engagement: developers must read,
modify, and explain Al-generated code before proceeding).

2.2 Skill Dimensions

Programming competence is operationalized as a six-dimensional
skill vector s € [0, 1]°:

(1) Syntactic fluency: ability to write correct code from spec-
ifications without reference materials.

(2) Algorithmic reasoning: capacity to solve novel computa-
tional problems.

(3) Debugging;: skill at locating and fixing defects in unfamiliar
code.

(4) Code comprehension: ability to read, understand, and
predict the behavior of code.

(5) Architectural judgment: capacity to evaluate and design
system-level structures.

(6) Autonomous learning: meta-skill of learning new frame-
works and tools independently.

Each dimension has a corresponding Al automation weight w; €
[0, 1] reflecting how effectively current Al tools can assist with that
skill type. We set w = (0.80,0.50,0.35,0.25, 0.15, 0.10), reflecting
the observation that Al tools are most effective at syntax-level
assistance and least effective at architectural and meta-cognitive
support.

2.3 Task-Driven Learning Dynamics

Each simulated working day, a developer encounters T = 5 coding
tasks. Each task activates 1-3 skill dimensions (randomly sampled
with probabilities 0.4, 0.4, 0.2) and has a difficulty § ~ N (0.45, 0.152)
clipped to [0.05,0.95].

Success Probability. The probability of successfully completing a
task component in dimension i is modeled as a logistic function:

P(success) = o(k - (si — Sefr)) (1)

where ¢ is the sigmoid function, k = 8 controls steepness, s; is cur-
rent skill in dimension i, and S is the effective difficulty (reduced
by Al in treatment conditions).

AI Modulation. In the Unrestricted AI condition, Al reduces
effective difficulty by factor (1 —0.55 - w;) and cognitive processing
depth to 0.15 + 0.85 - (1 — w;). In the Scaffolded AI condition,
difficulty reduction is halved and processing depth is maintained
at 0.70 + 0.30 - (1 — 0.3w;).

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

The Skill Formation Paradox: How Al Coding Tools Boost Productivity While Impeding Novice Developer Learning

Learning Signal. The learning signal from each task attempt
integrates three factors:

¢ =D(3,si) - F(success,d —s;) - ¢ (2)

where D captures desirable difficulty (a Gaussian centered at gap
= 0.10, reflecting optimal learning when tasks are slightly above
current skill), F is a success/failure modulator (successful attempts
yield factor 0.8; near-miss failures yield 0.4; distant failures yield
0.1), and ¢ is the processing depth.

Skill Update with Transfer. Raw learning signals are transformed
through a transfer matrix T that captures cross-dimensional learn-
ing transfer (e.g., improvement in algorithmic reasoning partially
transfers to debugging). Skills update as:

s—s+a-(£-T)-f-mOs (3)

where a = 0.006 is the learning rate, = 0.0005 is the forgetting
rate, and m is a binary mask indicating dimensions not exercised
in the current task (implementing use-it-or-lose-it decay).

2.4 Experimental Design

We simulate a three-arm parallel design with n = 80 developers per
condition, over D = 252 working days (approximately 12 calendar
months). Initial skill levels are sampled from A (0.20, 0.052) clipped
to [0.05,1.0], representing novice developers with 0-2 years of
experience.

Assessment Protocol. Tool-removed skill assessments are con-
ducted monthly (every 21 working days), yielding 12 assessment
time points. Assessment scores equal the true skill level plus Gauss-
ian noise NV (0, 0.03%), simulating measurement error.

Outcome Measures. Primary outcomes include: (1) Skill growth:
change in tool-removed skill level from first to last assessment;
(2) Effect sizes: Cohen’s d between conditions at final assessment;
(3) Dependency index: DI = (Al-assisted — unassisted) / Al-assisted
performance; (4) Productivity: tasks completed per day with and
without Al Statistical significance is evaluated via permutation
tests with 5,000 permutations.

Sensitivity Analysis. We systematically vary the processing depth
parameter ¢ from 0.05 to 0.95 (in steps of 0.05) to identify the
crossover threshold at which Al assistance transitions from net-
negative to net-positive for skill formation. This analysis uses 40
developers per condition to maintain computational efficiency.

3 RESULTS
3.1 Overall Skill Formation

Table 1 summarizes skill trajectories across conditions. All three
groups begin with comparable skill levels (= 0.23). After 12 months,
the Control group reaches a mean skill of 0.643, the Unrestricted Al
group reaches 0.562, and the Scaffolded Al group reaches 0.641. The
Unrestricted Al condition produces 17.3% less skill growth than
Control, while Scaffolded Al produces growth nearly identical to
Control.

The overall Cohen’s d between Unrestricted Al and Control is
—1.04 (large negative effect), indicating that unrestricted Al use

Conference’17, July 2017, Washington, DC, USA

Table 1: Overall skill trajectories by condition. All values are
mean skill levels on tool-removed assessments (scale 0-1).
Growth is the difference between final and initial assess-
ments.

Condition Initial Final Growth
Control (No AI) 0238 0.643 +0.404
Unrestricted AI ~ 0.228 0.562 +0.334
Scaffolded Al 0.236 0.641 +0.405

significantly impairs skill development. The Scaffolded AI vs. Con-
trol effect size is d = —0.04 (negligible), indicating that scaffolded
engagement preserves nearly all of the learning benefit of unaided
practice.

3.2 Dimension-Specific Effects

Figure 1 displays skill trajectories for each of the six dimensions
across all three conditions. The magnitude of AI’s negative effect is
strongly correlated with the dimension’s automation weight.

Table 2 reports the dimension-specific final skill levels and ef-
fect sizes. Syntactic fluency shows the largest impairment under
unrestricted AI (d = —-5.10, p < 0.001), followed by algorithmic
reasoning (d = —2.07, p < 0.001). Architectural judgment shows
the smallest effect (d = —0.44, p = 0.006), consistent with Al tools
providing less assistance for high-level design decisions. Under Scaf-
folded AL, most dimensions show small or non-significant effects
relative to Control, with algorithmic reasoning actually showing
a small positive effect (d = +0.34, p = 0.031), suggesting that scaf-
folded AI engagement may enhance certain reasoning skills.

Figure 2 visualizes the dimension-specific results as a heatmap,
clearly showing the gradient of Al impact across the automation
spectrum. The Spearman correlation between automation weight
w; and Unrestricted Al effect size is p = —0.94, confirming that
Al most impairs skills in dimensions where it provides the most
assistance.

3.3 The Productivity-Skill Dissociation

Figure 3 illustrates the central paradox: unrestricted Al users appear
more productive when measured with Al access (3.69 tasks/day vs.
3.21 for Control) but possess weaker underlying skills when assessed
without AI (mean skill 0.562 vs. 0.643).

This dissociation has practical implications: organizations evalu-
ating developer performance based on Al-assisted output metrics
will systematically overestimate the capability of developers who
rely heavily on Al tools. The gap between measured productivity
and genuine skill represents a hidden dependency that only becomes
visible when AI access is removed or when developers face novel
problems outside AI’s competence.

3.4 Dependency Index

Figure 4 tracks the Dependency Index (DI) over time. Both Al condi-
tions begin with high DI values (~ 0.62) due to novice-level starting
skills. As skills develop, DI decreases—but more slowly for Unre-
stricted Al users. At month 12, the Unrestricted Al group retains
a DI of 0.236 compared to 0.182 for Scaffolded Al, indicating that

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

Anon.

Skill Trajectories Across Six Programming Dimensions

08 Syntactic Fluency

Algorithmic Reasoning

Debugging

0.7 A b

0.6 B

0.5 A b

0.4 4 B

Skill Level

0.3 A b

0.2 4 B

=~ Control (No Al)
—— Unrestricted Al
—— Scaffolded Al

0.1 T T T T T T T T

Code Comprehension

Architectural Judgment

Autonomous Learning

0.8

0.7 B

0.5 4 B

0.4 1 B

Skill Level

0.2 1 4

Figure 1: Skill trajectories across six programming dimensions over 12 months. Lines show group means; shaded regions show
95% confidence intervals. The Unrestricted Al condition (red) shows progressively diverging trajectories from Control (green),
with the largest gaps in highly automatable dimensions (syntactic fluency, algorithmic reasoning). The Scaffolded AI condition

(blue) closely tracks Control across all dimensions.

Table 2: Dimension-specific final skill levels and effect sizes. Cohen’s d compares each Al condition against Control; negative
values indicate Al-induced skill impairment. p-values from permutation tests (5,000 permutations). Dimensions ordered by Al

automation weight (descending).

Al Weight Final Skill (Mean) Cohen’s d vs. Control
Dimension wi Control Unrest. AT Scaff. A Unrest. (p) Scaff. (p)
Syntactic Fluency 0.80 0.651 0.390 0.650 —5.10 (< .001) —0.02 (0.910)
Algorithmic Reasoning 0.50 0.648 0.566 0.660 —2.07 (< .001) +0.34 (0.031)
Debugging 0.35 0.666 0.615 0.647 —1.28(<.001) —0.59 (< .001)
Code Comprehension 0.25 0.662 0.620 0.649 —1.21(< .001) —0.42(0.010)
Architectural Judgment 0.15 0.664 0.648 0.656 —0.44 (0.006) —0.22 (0.177)
Autonomous Learning 0.10 0.566 0.535 0.582 —0.72 (< .001) +0.30 (0.065)

unrestricted users remain more dependent on Al tools despite 12
months of practice.

3.5 Sensitivity Analysis: The Crossover
Threshold
Figure 5 presents the sensitivity analysis varying processing depth

¢ from 0.05 to 0.95. Below ¢ ~ 0.75, Al assistance produces a net
negative effect on skill formation. Above this threshold, the learning

benefit of reduced difficulty and increased success rate outweighs
the cost of reduced cognitive effort, and Al becomes net-positive.
This crossover threshold at ¢ = 0.75 has direct design implica-
tions: Al tools that ensure developers engage with at least 75% of
the cognitive depth of unaided work will produce net-positive skill
outcomes. The default Unrestricted Al processing depth of 0.15 falls
far below this threshold, explaining the large negative skill effect.
The Scaffolded Al condition’s processing depth of 0.70 approaches

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

The Skill Formation Paradox: How Al Coding Tools Boost Productivity While Impeding Novice Developer Learning

Final Skill Levels by Condition and Dimension

0.7

Control 0.562

Unrestricted Al 0.533

Final Skill Level

Scaffolded Al 0.584

Syntactic Algorithmic
Fluency Reasoning

Debugging Code Architectural Autonomous
Comprehension Judgment Learning

Figure 2: Heatmap of final skill levels by condition and di-
mension. Warmer colors indicate higher skill. The Unre-
stricted Al condition shows notably lower skill in the left
columns (high-automation dimensions) compared to Control
and Scaffolded AL

The Productivity--Skill Dissociation

(a) Observed Productivity (b) Underlying Skill

—— Control (No Al)
— Unrestricted Al
— Scaffolded Al

w

&
°
S

w
°

°

&

°
°
=

Tasks / Day (with Al)
&
skill (Tool-Removed)

°
w

— Control (No Al)
— Unrestricted Al
— Scaffolded Al

o

8 10 12

Figure 3: The productivity—skill dissociation. (a) Observed
productivity with AI access: Al users complete more tasks
daily. (b) Underlying skill on tool-removed assessments: Al
users develop weaker skills over time. This dissociation cre-
ates a dependency trap that is invisible under continued Al
access.

Dependency Index Over 12 Months

0.8
=== Unrestricted Al

0.7 1 = Scaffolded Al

0.6 1

0.5

0.4 1

0.3 1

Dependency Index

0.2 1

0.14

0.0

0 2 4 6
Month

0 -

10 12

Figure 4: Dependency Index (DI) over 12 months. Higher
values indicate greater reliance on Al tools. Unrestricted Al
users reduce dependency more slowly than Scaffolded AI
users, converging to a higher steady-state dependency level.

but does not quite reach the threshold, explaining its near-neutral
overall effect.

Conference’17, July 2017, Washington, DC, USA

Sensitivity Analysis: Processing Depth

(a) Skill vs. Processing Depth (b) Crossover Threshold

— Al Condition

-0.02

-0.04

Final Skill Level

-0.06

Skill Delta (Al — Control)

-0.08 Crossover (§=075)
Al Harms
A teips

-0.10
02 0.4 0.6 0.8 02 04 06 08
Processing Depth (¢) Processing Depth (¢)

Figure 5: Sensitivity analysis. (a) Final skill levels as a func-
tion of cognitive processing depth during AI-assisted work.
(b) Skill delta (AI minus Control): the crossover from nega-
tive to positive occurs at processing depth =~ 0.75. Below this
threshold, AT harms skill formation; above it, AI helps.

Effect Sizes by Dimension

= Unrestricted Al
mm Scaffolded Al

24

Cohen's d (vs. Control)

44

Architectural Autonomous
Comprehension ~ Judgment Learning

Debugging

Syntactic Algorithmic
Fluency Reasoning

Figure 6: Cohen’s d effect sizes by dimension. Unrestricted AI
(red) shows consistently negative effects, largest for highly
automatable skills. Scaffolded AI (blue) shows near-zero ef-
fects across most dimensions, with modest positive effects
for algorithmic reasoning and autonomous learning.

3.6 Effect Size Summary

Figure 6 displays Cohen’s d effect sizes for all six dimensions under
both AI conditions compared to Control. The key insight is that
the pattern of effects is qualitatively different between conditions:
Unrestricted Al shows uniformly negative effects that scale with
automation weight, while Scaffolded AI shows a mixed pattern
with small negative effects on some dimensions and small positive
effects on others.

4 DISCUSSION
4.1 The Skill Formation Paradox

Our model predicts a fundamental tension between short-term
productivity and long-term skill development. Unrestricted Al use—
the default mode in which most novice developers interact with
Al tools—produces a large negative effect on skill formation (d =
—1.04) while simultaneously boosting observable productivity. This
productivity—skill dissociation creates a systemic risk: organizations

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference’17, July 2017, Washington, DC, USA

optimizing for measurable output will inadvertently produce devel-
opers who cannot function without Al scaffolding.

The magnitude of the effect is dimension-dependent and strongly
correlated with the degree of Al automation. Syntactic fluency—
the skill most readily automated by current Al tools—shows the
largest impairment (d = —5.10). While one might argue that syntax
skills become less important when Al handles them, this argument
overlooks two concerns. First, syntactic fluency is foundational;
debugging, code review, and architectural reasoning all require
the ability to read and write code fluently. Second, Al tools will
not always be available, accurate, or applicable; developers with
atrophied fundamental skills face amplified failures when Al cannot
help.

4.2 Scaffolding as a Solution

The Scaffolded Al condition demonstrates that the negative skill
effect is not inherent to Al tool use but rather to the mode of engage-
ment. When novices are required to actively process Al output—
reading, modifying, and explaining generated code before incor-
porating it—skill development proceeds at nearly the same rate as
unaided practice (d = —0.04). This finding aligns with prior work
on active learning and desirable difficulty [3] and suggests concrete
design interventions:

o Explain-before-accept: Require novices to articulate why
Al-generated code works before incorporating it.

e Modification prompts: Present Al suggestions in a form
that requires adaptation rather than verbatim acceptance.

o Interleaved practice: Periodically disable Al assistance to
force unscaffolded practice.

o Progressive withdrawal: Gradually reduce Al assistance
as skill levels increase, analogous to training wheels.

4.3 The Crossover Threshold

The sensitivity analysis identifies a processing depth threshold
of ¢ = 0.75 at which AI transitions from skill-harming to skill-
enhancing. This has quantitative design implications: any Al in-
teraction protocol that maintains at least 75% of the cognitive en-
gagement of unaided work should produce net-positive learning
outcomes. Current Al tools that offer frictionless code completion
(estimated ¢ =~ 0.15) are far below this threshold, while structured
engagement protocols can approach or exceed it.

4.4 Limitations

Our findings are based on a computational model, not empirical
data from human participants. The model makes assumptions about
cognitive architecture (learning rates, forgetting dynamics, transfer
structure) that, while grounded in established theory, may not pre-
cisely match real-world learning. Key limitations include: (1) The
model does not capture motivational factors—novices restricted
from AI tools may be demotivated, while those with Al may expe-
rience increased enjoyment. (2) The task environment is simplified;
real software development involves social interaction, code review,
and collaborative problem-solving that may modify learning dy-
namics. (3) The processing depth parameter, while theoretically
motivated, conflates multiple cognitive processes into a single scalar.

Anon.

(4) Al tool capabilities evolve rapidly; the automation weights used
here reflect current-generation tools and may shift as Al improves.

These limitations are inherent to the computational modeling
approach but are offset by its strengths: the ability to generate
precise, testable predictions; systematic exploration of parameter
space; and low cost relative to longitudinal human studies.

4.5 Empirical Validation

Our model generates several testable predictions for empirical stud-
ies:

(1) Dimension-specificity: The Al-induced skill deficit should
be largest for syntactic and algorithmic skills, smallest for
architectural and meta-cognitive skills.

(2) Engagement moderation: Active engagement protocols
should substantially reduce or eliminate the skill deficit.

(3) Dependency trap: Tool-removed assessments should re-
veal skill gaps invisible in Al-assisted performance metrics.

(4) Threshold effect: Interventions increasing processing depth
above ~0.75 should flip the AT effect from negative to posi-
tive.

We recommend a Randomized Longitudinal Skill Assessment (RLSA)
design—a 12-month, three-arm trial with monthly tool-removed
assessments across all six skill dimensions—as the empirical study
most directly suited to testing these predictions.

5 CONCLUSION

We have presented a computational cognitive model that addresses
the open question of how Al coding tools affect novice developer
skill formation. Our simulation of 240 developers over 12 months
reveals a skill formation paradox: unrestricted Al use boosts produc-
tivity while significantly impeding underlying skill development,
with the strongest effects in highly automatable skill dimensions.
Critically, scaffolded engagement—requiring active processing of
AT output—nearly eliminates this deficit, and sensitivity analysis
identifies a processing depth threshold at ¢ = 0.75 that separates
skill-harming from skill-enhancing AI use.

These findings have immediate practical implications. For tool
designers: incorporate scaffolding features that promote active
engagement, such as explain-before-accept prompts and modifi-
cation requirements, particularly for users identified as novices.
For engineering managers: supplement Al-assisted productivity
metrics with periodic tool-removed skill assessments to detect hid-
den dependency. For educators: integrate Al tools into curricula
with explicit scaffolding protocols rather than unrestricted access,
and teach students to evaluate rather than merely accept Al out-
put. For researchers: prioritize empirical studies that disentangle
productivity from skill, measure multiple skill dimensions, and test
engagement-mode interventions.

The skill formation paradox is not an argument against Al cod-
ing tools—it is an argument for designing them thoughtfully, with
attention to the cognitive processes that drive genuine skill devel-
opment. The gap between productivity and competence is invisible
when AT access continues, making proactive assessment and delib-
erate practice design essential for the next generation of software
developers.

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

= =

REFERENCES

John R. Anderson. 1982. Acquisition of Cognitive Skill. Psychological Review 89,
4 (1982), 369-406

Hamsa Bastani, Osbert Bastani, Alp Sungu, Haosen Ge, Ozge Kabakc1, and Rei Ma-
riman. 2024. Generative Al Can Harm Learning. arXiv preprint arXiv:2410.15745
(2024).

Robert A. Bjork. 1994. Memory and Metamemory Considerations in the Training
of Human Beings. In Metacognition: Knowing About Knowing. MIT Press, 185-
205.

Robert A. Bjork and Elizabeth L. Bjork. 1992. A New Theory of Disuse and an Old
Theory of Stimulus Fluctuation. From Learning Processes to Cognitive Processes:
Essays in Honor of William K. Estes 2 (1992), 35-67.

Zheng Cui, Alejandra Zambrano, Jerry Lo, Michael Lee, and Juho Leinonen. 2024.
The Effects of Generative Al on Computing Students’ Help-Seeking Preferences.
arXiv preprint arXiv:2410.12944 (2024).

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Computing Education
in the Era of Generative AL. Commun. ACM 67, 2 (2024), 56—67.

Yuxiang Hou, Siddharth Bhatt, Jiawen Zang, Yash Agarwal, Sida Wu, and
Sida Peng. 2024. The Effects of Generative Al on High Skilled Work: Evi-
dence from Three Field Experiments with Software Developers. arXiv preprint
arXiv:2410.12944 (2024).

Slava Kalyuga, Paul Ayres, Paul Chandler, and John Sweller. 2003. The Expertise
Reversal Effect. Educational Psychologist 38, 1 (2003), 23-31.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators

The Skill Formation Paradox: How Al Coding Tools Boost Productivity While Impeding Novice Developer Learning

(10]

(15]

[16]

Conference’17, July 2017, Washington, DC, USA

on Supporting Novice Learners in Introductory Programming. Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (2023), 1-23.
Kenneth R. Koedinger, Albert T. Corbett, and Charles Perfetti. 2012. The
Knowledge-Learning-Instruction Framework: Bridging the Science-Practice
Chasm to Enhance Robust Student Learning. Cognitive Science 36, 5 (2012),
757-798.

Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2024. Read-
ing Between the Lines: Modeling User Behavior and Costs in Al-Assisted Pro-
gramming. arXiv preprint arXiv:2210.14306 (2024).

Raja Parasuraman and Victor Riley. 1997. Humans and Automation: Use, Misuse,
Disuse, Abuse. Human Factors 39, 2 (1997), 230-253.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The Impact
of Al on Developer Productivity: Evidence from GitHub Copilot. arXiv preprint
arXiv:2302.06590 (2023).

James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Lauren Margulieux. 2024. The Widening Gap: The Effects of Al-Assisted Code
Generation on Novice and Expert Developers. Proceedings of the 55th ACM
Technical Symposium on Computer Science Education (2024), 142-148.

Zheyuan Shen, Nikolas Zolas, Samuel Assefa, Miranda Bogen, and Noam Slonim.
2026. How Al Impacts Skill Formation. arXiv preprint arXiv:2601.20245 (2026).
Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (2022), 1-7.

Celina Weber, Linwei Fang, David Broneske, and Gunter Saake. 2025. The Impact
of Al Tools on Software Engineering Tasks. arXiv preprint arXiv:2507.09089
(2025).

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Model Overview
	2.2 Skill Dimensions
	2.3 Task-Driven Learning Dynamics
	2.4 Experimental Design

	3 Results
	3.1 Overall Skill Formation
	3.2 Dimension-Specific Effects
	3.3 The Productivity–Skill Dissociation
	3.4 Dependency Index
	3.5 Sensitivity Analysis: The Crossover Threshold
	3.6 Effect Size Summary

	4 Discussion
	4.1 The Skill Formation Paradox
	4.2 Scaffolding as a Solution
	4.3 The Crossover Threshold
	4.4 Limitations
	4.5 Empirical Validation

	5 Conclusion
	References

