The Skill Formation Paradox

A computational analysis of how Al coding tools boost
short-term speed while eroding long-term competence.

Generation Rate Cognitive Density

+400% -60% i

VELOCITY COMPETENCE

Based on the KDD ‘26 simulation model of novice developer skill acquisition.

Executive Summary: The hidden cost of frictionless coding

The Trap

L

Unrestricted Al usage creates a
Productivity-Skill Dissociation. Novices
appear 55% faster but suffer massive
skill attrition.

Cohen’s d = =1.04

The Mechanism

Learning requires Processing Depth.
When Al lowers cognitive engagement

below a critical threshold, learning stalls.

Threshold:

Cognitive engagement

The Solution

We do not need to ban Al. Implementing
‘Scaffolded Engagement’ (explain-before-
accept) preserves nearly 100% of skill
growth while maintaining utility.

Skill Impact:

d = -0.04 (Negligible)

The current consensus is that Al is a productivity engine.

+55.8% Task Completion

Rate (Peng et al. [13])

Tools like GitHub Copilot and
Claude have transformed
workflows. For a novice, the
friction of syntax and
boilerplate has vanished.
Recent empirical studies
validate this feeling of speed.

Tasks Completed Per Day
Run in JetBrains Mono

*\\ Disproportionate gains
for Junior Developers
(Shen et al. [15])

Junior/Novice Mid-Level Senior
Developer Experience Level

But what is replacing the friction?

Completing a task is not the same as learning how to do it.

The Productivity-Skill Dissociation

Output Internal Model

High Volume Low Knowledge

A novice completing tasks rapidly with Al is not necessarily compiling the knowledge required to
repeat the feat. If we prioritize output over understanding, we create a cohort of “hollow"
developers—productive only when the Al is active, and helpless when it is removed.

“Unrestricted Al users look smarter
but are actually learning less.”

n

Learning requires struggle, retrieval, and “Desirable Difficulty”.

1. Problem 2. Struggle / Retrieval

Encounter

Retrieval-Based
Strengthening: Skills
consolidate when we
struggle to recall them.

E *fﬂ E

Critical for synaptic
strengthening.

/

A/
Of‘fo
_ (/f

Desirable Difficulty:
Moderate challenge
prevents the learning
aiSolution curve from flattening

Application to zero.

Cognitive |
Learning Loop

q

4. Skill
Compilation

The Investigation: We simulated 240 novice developers over a virtual

year.
Virtual Laboratory
— The Subjects \ — The Timeline]
240 Novice Developers ' 252 Working Days
(0-2 years experience, N ~ 0.20 initial skill) @?ﬁ (12 Months of simulated cognitive evolution)
The Workload ~— The Goal
5 Coding Tasks / Day [g5_ To observe skill evolution (62
Varying difficulty & skill activation f_T when tools are REMOVED.
Maonthly Monthly Monthly Monthly Monthly
T e e i U e g
b & % # ! # %, & % # b # B, # , # . , # - h.i 'h..-’ -\-....i" .

Month O Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 Month 7 Month 8 Month 9 Month 10 Month 11 Month 12

- Simulated Year Duration -

Three distinct modes of Al
engagement were tested.

Control (No Al) Unrestricted Al

1O

4l
Hard work. High friction. Full access. Passive acceptance.
Developers must solve problems The Al provides code, and the developer
independently. accepts it with minimal review (The

"Copy/Paste” standard).

Scaffolded Al

Q [—[Euplam -before- accept

IIIH

‘Explain’
M| ‘Modify’

S

t—[Modification)I—T

L

Mandatory engagement.

Al access is granted, but requires
"Explain-before-accept” and
modification before proceeding.

Competence was measured across six distinct cognitive dimensions.
Ranked by Al Automation Weight (w)

Highly { } Syntactic Fluency (w =0.80)

Automatable Writing correct code/syntax.

E i Algorithmic Reasoning (w =0.50) R

Solving computational problems.

x, Debugging (w =0.35)
e E—
AQ

Locating and fixing defects.

6 Code Comprehension (w =0.25)

GEY T |
=== Understanding behavior.
Architectural_Judgment (w=0.15) N
System-level design.
- m Autonomous Learning (w =0.10) —
Qo Meta-skill of learning new tools.

Automate

Unrestricted Al creates the most productive employees...

Observed Productivity (Tasks per Day)

Winner (Speed)
1 3.69 tasks/day

High Output
(Engagement Overhead)

3.21 tasks/day

Control (No Al) Scaffolded Al Unrestricted Al

If you measure success by tickets closed or commits pushed, Unrestricted Al is the obvious choice.

...but it produces the least competent engineers.

Underlying Skill Level (Tool-Removed Assessment)

0.70
0.643 Control
)= Scaffolded

— 17.3% Less Skill Growth
-4 Unrestricted

0.60

0.50
Effect Size:

Cohen’'s d = -1.04

0.40

0.30

Skill Level (Normalized Score)

0.20

The skills we delegate to Al are the skills that atrophy.

Detailed Skill Dimension Analysis (Normalized Scores)

Syntactic Fluency Semantic Understanding Logic & Reasoning

Unrestricted Al & A 0.517 0.623

Deep Skill Loss (0.390 vs 0.651 Control)
Effect Size: d = -5.10

Control (No Al) : 0.748 0.736

Syntactic Fluency Semantic Understanding Logic & Reasoning

Scaffolded Al 0.864

The correlation is clear (p = -0.94). The more the Al helps (w), the less the
human learns. We are trading fundamental fluency for speed.

Why the loss of “Syntactic Fluency” matters.

Observable Output
(Code generation)
JetBrains Mono

If this foundation
melts, the ability to
Debug and Architect
collapses.

\

d

Syntactic Fluency

i (Reading/Writing)

Architectural
Judgment

A developer with low
syntactic fluency (d = -5.10)
becomes a “Black Box
Operator.” They can generate
code, but lack the granularity
of understanding to fix it
when it breaks.

Crimson Pro with
JetBrains Mono data

The Dependency Trap: Unrestricted users
never wean off the tool.

Dependency Index (DIl) over 12 Months

O
o

—
™~

O
N

Dependency Index

O
o

=)
N
Lun
o))
o

10 12
Months

After one year of practice, Unrestricted users are still heavily reliant
on Al to perform basic tasks.

The mechanism of failure is low “Processing Depth”.

Unrestricted Al Scaffolded Al

B NN
Speed

b N
N : 1 O L
Passive Acceptance | - Active Interrogation |

Tab to complete. Read, Verify, Edit.
Low depth = Low learning signal. High depth = Strong learning signal.

The Crossover Threshold is 0.75.

Sensitivity Analysis Graph

= 0.4 Current

E Frictionless Al |

E 0.2 Net Positive

| (Helps Learning) Neytral
i 0.0 : Impact
= 0.2 Net Negative \

St (Harms Learning)
= : [The Threshold }
x~ -0.4 :

W

Ty : :
60.0 0.2 0.4 0.6 0.8 1.0

Processing Depth ()

To transition from harmful dependency to beneficial learning, Al systems must
actively increase processing depth to meet or exceed the 0.75 threshold.

The Solution: “Scaffolded Engagement”.

Reintroducing specific friction to ensure cognitive processing.

1. Explain-before-accept @ 2. Modification Prompts /3. Interleaved Practice (5 @8

/ - - ' .
| = e

 Prompt: Why does this solution work? | .f/ \
i | , | |
| | Enter explanation here... def, cateulatetayeracalratal: @ /
| | 4 4

total = [Fill in summation logic]

count = len(data)

return total / [Fill in divisor]

I
|
| |
E’iﬂ "-f_['*ﬁ{ Submit Explanation | |

Practice Mode: OFF

| @ Next Practice: 15 min.

\ ’ = = 7
Visual: A dialog box Ul pop-up Visual: Al suggesting a template Visual: A toggle switch turned
asking “Why does this solution rather than finished code, “OFF" periodically.

work?” before code can be inserted. requiring the user to fill in gaps.

\« Ihink of this as training wheels that force you to pedal,

/7 rather than an electric motor that does the work for you. ™

Scaffolding preserves learning without sacrificing utility.

Skill Growth vs Control Algorithmic Reasoning Bonus

2d=-0.04". *d = +0.34 &

Statistically indistinguishable from the Scaffolded users actually outperformed
Control group. No learning loss. Control in complex reasoning.

Active engagement filters the Al's speed through the human’s cognitive process,
allowing compilation of knowledge to occur.

For Engineering Managers: Trust, but verify (without the tool)

The Risk

or speed will hide
competency gaps.

7

PR Volume/Speed

JetBrains Mono S

You are measuring the tool,
not the talent.

Evaluating juniors solely
on pull request volume

The Fix

/

—

|\/I Tool-Removed Assessments [«

Implement periodic
whiteboarding or unassisted
debugging sessions to
sessions to check for hidden
dependencies.

|\/I Value ‘Why’ over ‘What'

Code reviews must focus on
the developer's ability to
explain the logic, not just the
correctness of the output.

@
28

For Tool Designers: Friction is a feature, not a bug.

@
£

.
0o Next Gen Al Code Editor @ & O 03]
[| Files - code.cps * P Al Assistant - |
o | O diea class Testana f ks @ &
» [.end private testseorse();
gﬁ » [sre const precessing(FPorth = new DataSensed = "offs™;
irin.cs if (tesde ==} {
gl}“ € _gitignora anfszoda = 3}
' .mouldopr.mid return variekzrgintioos; / \
EE? d } v
package-bock jsen
packags:json B white (tont BentolConnection) 4 =
71 BEADME.md if (4lProeesslastaoes =3) I
= vortstig.nno dataanceerns = dataSecvsbselforecingl) F:plaln Thrs code change 5.
implications before accepting.

alse |
outore,.printtin{™ekdy ceaies is baobtivelevosda“};

}

return setFHatifests);

Terminal Output Savage console

Eode successtiully
Founding create one-parsain string vansen.
The expnait is forzsoraranrabli the bize dutow.

F5 Ci\Ugprs\dsmastsioawank % |:|

I JetBraims Meno 0 &0 = Terminal

{b Process & Explain
k @ Accapt B Continue [Cantion))

Ul elements that pause
the workflow to ensure
/ user processing.

Cognitive Gate
f

X 7

Explain this code change's
implications before accepting.

Process & Explain

Ln1l, Col21 Speces:d4 UTF-B LF LF §? Terminal £l

» Stop optimizing for “one-click” acceptance.
* Implement Progressive Withdrawal: Like training wheels, Al assistance should
decrease as user skill increases (The “Expertise Reversal Effect”).

Speed is not Skill.

nene rnegkeedd egool cots [eerversfantest) = {

Unrestricted Al creates a “Productivity-Skill Dissociation,” boosting output while
hollowing out capability. We must design Al interaction to augment human
cognition, not to replace the struggle that creates it.

KDD '26:; The Skill Formation Paradox

