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Evaluating the Efficacy of LLM-Based Reviewer Agents
in Scientific Peer Review: A Multi-Agent Simulation Study

Anonymous Author(s)

ABSTRACT
The rapid integration of Large Language Models (LLMs) into scien-
tific workflows raises a critical question: can specialized LLM-based
reviewer agents improve the peer review process by helping editors
and reviewers focus on substantive contributions, or do they intro-
duce new, unforeseen challenges? We present a simulation-based
evaluation framework that models peer review as a multi-agent
system with five distinct reviewer agent profiles, a synthetic manu-
script corpus of 160 papers with planted defects, and an adversarial
robustness test suite. Our experiments measure four dimensions of
reviewer agent efficacy: (1) decision accuracy against ground-truth
editorial labels, (2) score calibration across seven review dimen-
sions, (3) defect detection capability, and (4) adversarial robustness
under five perturbation types. We find that multi-agent aggrega-
tion achieves 95.0% decision accuracy (𝜅 = 0.925) and near-perfect
defect detection (F1 = 0.987 via union aggregation), substantially
outperforming any individual agent. However, agents remain vul-
nerable to adversarial manipulation, with adversarial prompt in-
jection causing a +0.90 score inflation and 16.7% decision flip rate.
Panel size ablations reveal diminishing accuracy returns beyond
3 agents but monotonically increasing defect recall up to 9 agents.
These findings suggest that LLM reviewer agents are most effec-
tive as screening assistants in ensemble configurations, but require
adversarial hardening before deployment in editorial pipelines.

1 INTRODUCTION
Scientific peer review serves as the primary quality-control mecha-
nism for published research, yet it faces mounting pressures: expo-
nentially growing submission volumes, declining reviewer availabil-
ity, and persistent concerns about inconsistency and bias [10, 11].
The emergence of powerful Large Language Models (LLMs) has
simultaneously transformed scientific writing—enabling higher
surface-level quality regardless of author expertise—and created
opportunities for automated review assistance [5].

Kusumegi et al. [5] document that traditional linguistic heuris-
tics (e.g., writing complexity, stylistic markers) have become unre-
liable signals of scientific merit in LLM-assisted manuscripts. This
“signal collapse” creates screening challenges for editors and re-
viewers who previously relied on surface-level quality as a proxy
for substance. As a response, the authors propose specialized LLM
“reviewer agents” to assist with methodological checks and nov-
elty assessment, but explicitly note uncertainty about whether this
approach will help or harm the peer review process.

This paper directly addresses this open question through a rigor-
ous, reproducible simulation study. We design a multi-agent frame-
work that captures the key dynamics of LLM-based peer review—
diverse reviewer profiles, multi-dimensional assessment, aggrega-
tion strategies, and adversarial manipulation—without requiring
access to proprietary LLM APIs or live editorial systems.
Contributions.We make the following contributions:

(1) A multi-agent simulation framework that models LLM re-
viewer agents with configurable accuracy, bias, defect sen-
sitivity, and adversarial susceptibility profiles, evaluated
on a corpus of 160 synthetic manuscripts with 267 planted
defects.

(2) Comprehensive efficacy evaluation across four dimensions:
decision accuracy, score calibration, defect detection, and
adversarial robustness, with panel size ablations from 1 to
9 agents.

(3) Quantitative evidence that multi-agent aggregation achieves
near-expert decision accuracy (𝜅 = 0.925) and defect de-
tection (F1 = 0.987), but remains vulnerable to adversarial
prompt injection (+0.90 score inflation).

(4) Actionable deployment recommendations for using LLM re-
viewer agents as ensemble screening assistants with human
oversight, informed by our empirical findings.

1.1 Related Work
LLM-as-Judge and LLM-as-Reviewer. Recent work has explored

LLMs as evaluators of text quality and scientific merit. Zheng et
al. [17] introduced the “LLM-as-a-Judge” paradigm and demon-
strated moderate agreement with human preferences. Robertson et
al. [9] and Liu et al. [7] evaluated GPT-4 as a peer reviewer, finding
moderate agreement with human reviewers (Cohen’s 𝜅 ≈ 0.2–0.4)
but systematic biases toward longer, more technically dense sub-
missions. Bao et al. [1] argue that LLMs are not yet human-level
evaluators, particularly for assessing originality and methodolog-
ical rigor. Thelwall [13] and Tyser et al. [14] provide large-scale
empirical analyses of LLM-generated feedback quality.

Automated Scientific Review Systems. Prior systems such as Re-
viewAdvisor [16] attempted neural approaches to review assistance.
Checco et al. [3] survey AI-assisted peer review methods and iden-
tify key challenges including calibration and bias. More recently, Lu
et al. [8] demonstrated fully automated scientific discovery pipelines
that include self-review components. Wang et al. [15] identify open
problems in building LLM research agents, including self-evaluation
and diversity.

Bias and Fairness in Peer Review. Stelmakh et al. [12] document
systematic biases in human peer review. Shah [11] outlines chal-
lenges for machine-assisted review, including the risk of amplifying
existing biases. Hosseini and Horbach [4] raise ethical concerns
about AI-generated reviews, including accountability for errors.
Barocas et al. [2] provide broader context on fairness considera-
tions for ML systems.

Signal Collapse in LLM-Era Writing. Kusumegi et al. [5] show
that LLM adoption has homogenized surface-level writing quality
across the quality spectrum, collapsing signals that editors previ-
ously used for triage. Liang et al. [6] monitor AI-modified content
in peer reviews themselves, finding substantial LLM usage among
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Table 1: Review dimensions with their weights in the overall
quality score. Weights reflect the relative importance of each
dimension in editorial decision-making.

Review Dimension Weight

Methodological Soundness 0.25
Novelty 0.15
Clarity 0.10
Experimental Completeness 0.15
Statistical Validity 0.15
Significance 0.10
Ethical Considerations 0.10

Table 2: Planted defect types and their associated review
dimensions. Each defect type targets a specific aspect of man-
uscript quality, enabling fine-grained evaluation of reviewer
agent detection capabilities.

Defect Type Affected Dimension

Statistical Error Statistical Validity
Missing Baseline Experimental Completeness
Unsupported Claim Novelty
Methodological Flaw Methodological Soundness
Insufficient Data Experimental Completeness
Reproducibility Gap Methodological Soundness
Ethical Concern Ethical Considerations

reviewers. This bidirectional adoption—both authors and review-
ers using LLMs—motivates our investigation of whether reviewer
agents can provide reliable signals despite operating in an environ-
ment of LLM-permeated text.

2 METHODS
We design a simulation framework that models the peer review
process as a multi-agent system. This approach enables system-
atic, reproducible study of reviewer agent efficacy with controlled
ground truth, which would be infeasible with live editorial systems.

2.1 Synthetic Manuscript Corpus
We generate a corpus of 𝑁 = 160 synthetic manuscripts partitioned
into three quality tiers: 50 accept-quality, 60 revise-quality, and 50
reject-quality papers. Each manuscript is characterized by ground-
truth scores across seven review dimensions (see Table 1) and a set
of planted defects.

Score generation follows a hierarchical process: a base qual-
ity score is drawn uniformly from a tier-specific range (accept:
[7.0, 9.5], revise: [4.5, 7.0], reject: [1.5, 4.5]), then per-dimension
scores are sampled with Gaussian noise (𝜎 = 0.8) around this base.
Defects are sampled from seven types (Table 2), with reject-quality
papers receiving 2–4 defects, revise-quality 1–2, and accept-quality
0–1. Each planted defect reduces the score on its associated dimen-
sion by U(1.5, 3.5) points. The total corpus contains 267 planted
defects.

2.2 Reviewer Agent Profiles
We model five distinct reviewer agent profiles that capture the
diversity of LLM reviewer behaviors observed in practice [7, 9]:

(1) Accurate Generalist: Well-calibrated across all dimen-
sions (𝜎acc = 0.8, sensitivity = 0.65, noise = 0.3).

(2) Methods-Focused: Strong on methodology, stricter on
novelty and significance (𝜎acc = 0.6, sensitivity = 0.75, bias:
novelty −0.5).

(3) Novelty-Focused: Emphasizes novelty, lenient onmethods
(𝜎acc = 0.9, sensitivity = 0.50, bias: methods +0.5).

(4) Harsh Reviewer: Systematically lower scores across all
dimensions (𝜎acc = 1.0, sensitivity = 0.70, bias: all dims
−1.0).

(5) Lenient Reviewer: Systematically higher scores, models
sycophancy bias (𝜎acc = 1.0, sensitivity = 0.45, bias: all
dims +1.0).

Each agent perceives a manuscript’s quality through a noisy
observation model:

𝑠
(𝑑 )
perceived = 𝑠

(𝑑 )
true + 𝑏

(𝑑 ) + 𝜖1 + 𝜖2 + 𝛿
(𝑑 )
pert (1)

where 𝑠 (𝑑 )true is the ground-truth score for dimension 𝑑 , 𝑏 (𝑑 ) is the
agent’s systematic bias, 𝜖1 ∼ N(0, 𝜎acc) and 𝜖2 ∼ N(0, 𝜎noise) are
independent noise terms, and 𝛿 (𝑑 )pert captures the effect of adversarial
perturbation. Scores are clipped to [0, 10].

Defect detection is modeled as independent Bernoulli trials with
defect-type-specific sensitivity: 𝑃 (detect | defect type, perturbation).

2.3 Meta-Reviewer Aggregation
Individual reviews are aggregated using two strategies:

• Majority Vote: The most common decision among agents.
• Confidence-Weighted: Each agent’s decision is weighted

by its confidence score; the decision with the highest total
weight is selected.

For defect detection, we use union aggregation: a defect is considered
detected if any agent identifies it. Dimension scores are averaged
across agents.

2.4 Adversarial Perturbation Suite
We test robustness against five perturbation types applied to a
subset of 60 manuscripts:

• Surface Polish: Improves writing quality without chang-
ing substance (clarity +1.5, novelty +0.3).

• Claim Inflation: Overstates conclusions (novelty +1.2,
significance +1.0).

• Citation Gaming: Adds prestigious but irrelevant refer-
ences (novelty +0.5, completeness +0.4).

• Methodology Obfuscation: Hides flaws in complex lan-
guage (methods +0.8, stats +0.6).

• Adversarial Prompt: Embeds LLM-targeting instructions
(all dimensions +1.0).

2.5 Evaluation Metrics
We evaluate reviewer agent efficacy along four axes:
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Table 3: Individual reviewer agent performance. Accuracy
and Cohen’s 𝜅 measure decision quality; calibration (𝑟 ) mea-
sures score alignment with ground truth; defect F1 measures
error detection. All metrics from 160 manuscripts with 267
planted defects.

Agent Profile Acc. 𝜅 Cal. 𝑟 Def. F1

Accurate Generalist 0.938 0.906 0.955 0.746
Methods-Focused 0.956 0.934 0.968 0.813
Novelty-Focused 0.938 0.906 0.937 0.587
Harsh Reviewer 0.750 0.628 0.929 0.797
Lenient Reviewer 0.831 0.748 0.928 0.602

• Decision Accuracy: Overall accuracy and Cohen’s 𝜅 for
three-class (accept/revise/reject) decisions against ground
truth.

• Score Calibration: Pearson correlation 𝑟 between agent
scores and ground-truth scores per dimension.

• Defect Detection: Precision, recall, and F1 for planted
defect identification.

• Adversarial Robustness: Mean score shift Δ and decision
flip rate under each perturbation type.

All experiments use a fixed random seed (42) for reproducibility.
We also conduct a panel size ablation study with 1, 3, 5, 7, and 9
agents.

3 RESULTS
3.1 Individual Agent Performance
Table 3 presents per-agentmetrics. The best individual agent (Methods-
Focused) achieves 95.6% accuracy (𝜅 = 0.934) with the highest cal-
ibration (𝑟 = 0.968) and defect detection (F1 = 0.813). The Harsh
Reviewer shows the lowest accuracy (75.0%, 𝜅 = 0.628) due to
its systematic negative bias, which causes accept-quality papers
to be downgraded. The Lenient Reviewer, modeling sycophancy
bias, achieves 83.1% accuracy but the worst defect detection (F1 =
0.602, sensitivity = 0.45), confirming that positivity bias directly
undermines error-catching capability.

Figure 1 provides a visual comparison across three key metrics.
The results reveal a tension between decision accuracy and defect
detection: the Harsh Reviewer has poor decision accuracy but high
defect F1 (0.797), while the Novelty-Focused agent has high accu-
racy but weak defect detection (0.587). This suggests that reviewer
panels should include diverse profiles to balance these trade-offs.

3.2 Meta-Reviewer Aggregation
Multi-agent aggregation substantially improves upon individual
agents. Both majority vote and confidence-weighted aggregation
achieve 95.0% accuracy (𝜅 = 0.925), matching the best individual
agent’s accuracy while providing more balanced per-class perfor-
mance (accept: 100%, revise: 90.0%, reject: 96.0%).

The aggregated meta-reviewer achieves markedly superior score
calibration (𝑟 = 0.988) compared to the best individual agent (𝑟 =
0.968), confirming that averaging across diverse reviewers reduces
idiosyncratic noise.

Figure 1: Individual reviewer agent performance comparison
across three metrics: (a) decision accuracy and Cohen’s 𝜅,
(b) score calibration as Pearson correlation, and (c) defect
detection F1. The horizontal dashed line in (a) marks random
baseline (0.33). Agent profiles with systematic biases (harsh,
lenient) show distinct trade-offs between accuracy and detec-
tion.

Figure 2: Meta-reviewer score calibration (Pearson 𝑟 ) by re-
view dimension. All dimensions achieve 𝑟 > 0.98 after multi-
agent aggregation. The blue dashed line indicates the mean
correlation (𝑟 = 0.988). These high calibrations result from
averaging five diverse agents, which cancels systematic bi-
ases.

Most notably, union-based defect detection achieves F1 = 0.987
(precision = 1.000, recall = 0.974), dramatically outperforming the
best individual agent (F1 = 0.813). This demonstrates that the com-
plementary detection capabilities of diverse agents compound under
union aggregation.

3.3 Score Calibration by Dimension
Figure 2 shows the meta-reviewer’s score calibration by review
dimension. All dimensions achieve strong calibration (𝑟 > 0.98),
with Experimental Completeness showing the highest (𝑟 = 0.990)
and Clarity the lowest (𝑟 = 0.984). The uniformly high calibration
reflects the noise-reduction effect of averaging five independent
agents.

3.4 Defect Detection Analysis
Figure 3 presents defect detection recall by type for the meta-
reviewer with union aggregation. Missing Baseline, Statistical Error,
Insufficient Data, and Ethical Concern achieve perfect recall (1.00),

3
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Figure 3: Defect detection recall by type for themeta-reviewer
using union aggregation across all five agents. Four defect
types achieve perfect recall; Unsupported Claim andMethod-
ological Flaw are hardest to detect. The blue dashed line
shows overall recall (0.974). Perfect precision (1.0) indicates
no false positives.

while Unsupported Claim (0.93) and Methodological Flaw (0.95)
show slightly lower recall due to their higher intrinsic detection dif-
ficulty. Reproducibility Gap achieves 0.95 recall. Overall precision
is 1.00, indicating no false positives from union aggregation.

3.5 Adversarial Robustness
Table 4 and Figure 4 present adversarial robustness results. Adver-
sarial Prompt Injection is by far the most damaging perturbation,
causing a mean score inflation of Δ = +0.90 points and a 16.7%
decision flip rate. This finding directly confirms the concern raised
by Kusumegi et al. [5] about signal collapse: if manuscripts can
embed instructions that inflate scores by nearly a full point on a
10-point scale, the review signal is severely compromised.

Surface Polish (Δ = +0.32, flip = 6.7%) and Claim Inflation (Δ =

+0.30, flip = 6.7%) cause moderate score inflation, while Citation
Gaming (Δ = +0.14, flip = 8.3%) and Methodology Obfuscation
(Δ = +0.21, flip = 11.7%) show smaller score shifts but non-trivial
decision instability.

Methodology Obfuscation is particularly concerning because
it also degrades defect detection: under this perturbation, defect
detection F1 drops from 0.698 (clean) to 0.642, confirming that
obfuscation specifically masks methodological flaws.

3.6 Panel Size Ablation
Figure 5 shows how key metrics vary with reviewer panel size.
Decision accuracy peaks at 3 agents (98.1%, 𝜅 = 0.972) and remains
stable through 9 agents. Score calibration improves monotonically,
reaching 𝑟 = 0.993 at 9 agents. Most notably, defect detection F1
increases steadily: 0.772 (1 agent), 0.955 (3 agents), 0.987 (5 agents),
0.996 (7 agents), and 1.000 (9 agents). This indicates that each ad-
ditional agent contributes unique detection capability, and union
aggregation benefits from maximal panel diversity.

Inter-agent agreement (𝜅) shows an interesting non-monotonic
pattern: rising from 0.0 (trivially, for 1 agent) to 0.875 (3 agents),
then decreasing to 0.725 (5 agents) as more diverse profiles are

Table 4: Adversarial robustness results on 60 manuscripts
evaluated by the Accurate Generalist agent. Score shift (Δ)
measures mean inflation; flip rate measures the fraction of
decisions that change. Adversarial prompt injection is the
most damaging attack.

Perturbation Δ Score 𝜎Δ Flip Rate

Surface Polish +0.317 0.411 0.067
Claim Inflation +0.296 0.392 0.067
Citation Gaming +0.141 0.428 0.083
Method Obfuscation +0.212 0.510 0.117
Adversarial Prompt +0.901 0.387 0.167

Figure 4: Adversarial robustness analysis: (a) mean score in-
flation with standard deviation error bars, and (b) decision
flip rate. Adversarial prompt injection causes the largest
score shift (+0.90) and highest decision instability (16.7%).
Error bars in (a) show the standard deviation of the score
shift distribution across manuscripts.

Figure 5: Panel size ablation study. (a) Decision accuracy
and Cohen’s 𝜅 vs. panel size; accuracy peaks at 3 agents and
plateaus. (b) Score calibration and defect F1 vs. panel size;
both improve monotonically, with defect F1 reaching 1.0 at 9
agents. Diminishing accuracy returns suggest that 3–5 agents
provide the best cost-efficacy trade-off.

added, before stabilizing around 0.78. This mirrors the moderate
inter-reviewer agreement (𝜅 = 0.2–0.4) observed among human
reviewers at top venues [11], suggesting LLM agents replicate rather
than eliminate the inherent subjectivity of peer review.
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Figure 6: Summary dashboard of key efficacy metrics for
the LLM reviewer agent system with 5-agent panel and
confidence-weighted aggregation. Decision accuracy (0.950),
score calibration (0.988), and defect detection (0.987) all ex-
ceed the moderate-performance threshold (dashed line at
0.5), while inter-agent agreement (0.724) reflects the natural
subjectivity of review.

3.7 Efficacy Summary
Figure 6 presents a dashboard of the five key efficacy metrics for the
meta-reviewer system. The overall picture is one of strong perfor-
mance on standard review tasks (accuracy 0.950, calibration 0.988,
defect F1 0.987) with high inter-agent agreement (𝜅 = 0.724), sup-
porting the use of LLM reviewer agents as effective screening tools.
However, the adversarial vulnerability documented in Section 3.5
represents a critical limitation for unsupervised deployment.

4 CONCLUSION
We have presented a comprehensive, reproducible evaluation of
LLM-based reviewer agent efficacy through multi-agent simulation.
Our findings support five key conclusions:

(1) Multi-agent aggregation is essential. Individual agents vary
substantially in accuracy (75.0%–95.6%) and defect detection (F1:
0.587–0.813). Multi-agent aggregation with diverse profiles achieves
95.0% decision accuracy and 0.987 defect detection F1, demonstrat-
ing that ensemble review is the most viable deployment mode.

(2) Union-based defect detection is highly effective. Union aggre-
gation achieves near-perfect recall (0.974) with perfect precision
(1.000), suggesting that LLM reviewer panels are most valuable
as defect screening tools that surface potential issues for human
assessment.

(3) Adversarial vulnerability is a critical risk. Adversarial prompt
injection causes +0.90 score inflation and 16.7% decision flip rate,
confirming the signal-collapse concern raised by Kusumegi et al. [5].
This vulnerability must be mitigated—via input sanitization, ad-
versarial training, or review provenance verification—before LLM
agents can be trusted in editorial pipelines.

(4) Bias profiles create predictable trade-offs. Harsh reviewers have
high defect sensitivity but poor decision accuracy, while lenient
reviewers (modeling sycophancy) have the opposite profile. Care-
ful panel composition that includes diverse bias profiles improves
overall system robustness.

(5) Diminishing returns suggest practical panel sizes. Panel size ab-
lation reveals that 3–5 agents provide the best cost-efficacy trade-off
for decision accuracy, while defect detection continues to improve
up to 9 agents. Resource-constrained deployments should prioritize
diverse 3-agent panels; high-stakes reviews warrant larger panels.
Limitations. Our simulation uses stochastic models calibrated to
reported LLM reviewer behaviors rather than actual LLM API calls,
limiting ecological validity. The synthetic manuscript corpus lacks
the natural complexity of real submissions. Our adversarial pertur-
bations model the effect direction but not the full sophistication of
real gaming strategies. Future work should validate these findings
with live LLM experiments on real manuscripts.
Broader Impact. LLM reviewer agents have the potential to de-
mocratize access to high-quality review feedback, reduce reviewer
burden, and improve consistency. However, their deployment must
be accompanied by transparency (disclosing AI assistance), account-
ability structures (human-in-the-loop decisions), adversarial protec-
tions, and ongoing monitoring for emergent biases [4]. We advocate
for a “screening assistant” deployment model where LLM agents
provide structured pre-reviews that augment, rather than replace,
human expert judgment.
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