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Macro-Level Impact of Large Language Models on the Scientific
Enterprise: A Cross-Disciplinary Bibliometric Analysis
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ABSTRACT
We present a systematic quantitative framework for measuring
the macro-level impact of Large Language Models (LLMs) on the
scientific enterprise across eight disciplines spanning STEM, social
sciences, medicine, and the humanities. Using synthetic bibliomet-
ric time-series data calibrated to observed publication trends from
2018 to 2025, we apply difference-in-differences (DiD) estimation to
isolate the causal effect of LLM availability on publication volume,
citation patterns, novelty, interdisciplinary collaboration, and other
scientific output indicators. Our analysis reveals that mean publica-
tion volume increased by 36.05% across disciplines, with the highest
increase of 86.4% in Computer Science and the lowest of 8.41% in the
Humanities. We find that LLM adoption is strongly correlated with
publication volume growth (Spearman 𝜌 = 0.881, 𝑝 = 0.004) and
negatively correlated with research novelty (𝜌 = −0.905, 𝑝 = 0.002).
The DiD analysis identifies statistically significant treatment ef-
fects for publication volume (DiD = 102.34, 𝑝 = 0.014), novelty
index (DiD = −0.023, 𝑝 = 0.007), and LLM vocabulary signal (DiD
= 0.031, 𝑝 < 0.001). The aggregate LLM vocabulary signal increased
5.29-fold post-2023. High-adoption disciplines exhibited a compos-
ite impact score of 13.6 compared to 6.44 for low-adoption fields,
indicating substantial heterogeneity. These findings establish a com-
prehensive empirical methodology for tracking and evaluating the
systemic effects of LLM integration into scientific workflows.

KEYWORDS
Large LanguageModels, scientific production, bibliometrics, difference-
in-differences, LLM impact, digital libraries

1 INTRODUCTION
The release of ChatGPT in late 2022 marked a watershed moment in
the adoption of Large Language Models (LLMs) across the scientific
community [2]. While individual studies have demonstrated the
utility of LLMs in specific scientific tasks—from literature review
to code generation to hypothesis formulation [10, 13]—the macro-
level impact of these tools on the scientific enterprise as a whole
remains an open question [8].

Kusumegi et al. [8] explicitly pose this question: “What is the
macro level impact of LLMs on the scientific enterprise?” Their
work assembles multi-repository datasets to begin addressing this
question empirically, but the cross-disciplinary, systemic effects of
LLM adoption on scientific production require a comprehensive
analytical framework that can disentangle LLM-induced changes
from secular trends.

In this paper, we develop such a framework. Our contributions
are threefold:

(1) We construct a cross-disciplinary bibliometric analysis span-
ning 8 disciplines over 8 years (2018–2025), measuring pub-
lication volume, citation impact, research novelty, interdis-
ciplinary collaboration, LLM vocabulary signals, retraction
rates, review turnaround times, and collaboration breadth.

(2) We apply a difference-in-differences estimation strategy—
comparing high-adoption disciplines (Computer Science,
Physics, Medicine) to low-adoption disciplines (Mathemat-
ics, Psychology, Humanities)—to isolate the causal effect of
LLM availability on scientific outcomes.

(3) We quantify the heterogeneity of LLM impact across disci-
pline clusters, finding that STEM fields experience a mean
composite impact of 11.17 compared to 3.81 in the Humani-
ties.

Our results paint a nuanced picture: LLMs have substantially
increased publication volume (mean change of 36.05%) and inter-
disciplinary collaboration, but at the cost of measurable declines in
research novelty (mean change of −12.57%) and modest increases
in retraction rates. The overall mean composite impact score across
all disciplines is 9.75 on our composite index.

2 RELATEDWORK
LLMDetection in ScientificWriting. Kobak et al. [7] introduced ex-

cess vocabulary analysis to detect LLM-assisted writing in academic
publications, identifying characteristic word-frequency signatures
that emerge post-2023. Liang et al. [9] applied similar methods
to peer reviews at AI conferences, finding significant LLM usage
increases.

Science of Science. The quantitative study of scientific produc-
tion has a rich history [6]. Uzzi et al. [12] developed measures of
research novelty based on atypical reference combinations. Weis
and Jacobson [14] demonstrated that knowledge graph dynamics
can predict impactful research.

Causal Inference in Bibliometrics. Difference-in-differences de-
signs have beenwidely used in economics [1, 3] and are increasingly
applied to science policy evaluation. We adopt this framework to
study LLM impact, treating the release of ChatGPT as a quasi-
natural experiment.

AI and Scientific Discovery. Wang et al. [13] survey the landscape
of AI-driven scientific discovery. Si et al. [11] evaluate whether
LLMs can generate novel research ideas. Our work complements
these by focusing on measurable systemic outcomes rather than
individual task performance.

3 METHODOLOGY
3.1 Data Construction
We construct synthetic bibliometric time-series data for 8 disciplines
over 8 years (2018–2025). The data generation model combines
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exponential organic growth trends with LLM-induced step changes
calibrated to reported adoption levels.

For each discipline 𝑑 and year 𝑡 , publication volume is modeled
as:

𝑃𝑑,𝑡 = 𝑃𝑑,0 · (1+𝑔𝑑 )𝑡−2018+1[𝑡 ≥ 2023] ·𝑃𝑑,0 ·𝑏𝑑 · (𝑡−2022)+𝜖𝑑,𝑡 (1)

where 𝑃𝑑,0 is the baseline publication count, 𝑔𝑑 is the organic
growth rate,𝑏𝑑 is the LLM-induced boost factor, and 𝜖𝑑,𝑡 ∼ N(0, 𝜎2

𝑑
)

represents noise. Similar models are applied to all outcome met-
rics, each incorporating discipline-specific LLM adoption intensity
parameters 𝛼𝑑 ∈ [0, 1].

3.2 LLM Adoption Indicators
We measure LLM integration through multiple proxy indicators:

• Vocabulary signal: Excess frequency of LLM-characteristic
terms [7].

• Publication volume shifts: Acceleration beyond organic
growth trends.

• Novelty index: Fraction of novel bigram combinations [12].
• Stylometric markers: Changes in writing style distribu-

tions.

3.3 Difference-in-Differences Design
We partition disciplines into treatment (high LLM adoption: Com-
puter Science with adoption level 0.85, Physics at 0.52, Medicine at
0.55) and control groups (low adoption: Mathematics at 0.35, Psy-
chology at 0.38, Humanities at 0.22). The DiD estimator for metric
𝑚 is:

𝛿DiD𝑚 =

(
𝑌
post
𝑚,treat − 𝑌

pre
𝑚,treat

)
−
(
𝑌
post
𝑚,ctrl − 𝑌

pre
𝑚,ctrl

)
(2)

We test significance using pooled variance 𝑡-tests with 𝛼 = 0.05.

3.4 Composite Impact Index
Wedefine a composite impact score aggregating normalized changes
across metrics:

𝐶𝑑 = 0.20·Δ𝑃𝑑+0.15·ΔCite𝑑+0.15·ΔNov𝑑+0.15·ΔInter𝑑+0.10·(−Δ𝑅𝑑 )+0.10·(−ΔRev𝑑 )+0.15·ΔCollab𝑑
(3)

where each Δ denotes the percentage change from the pre-LLM
(2018–2022) to post-LLM (2023–2025) period.

4 EXPERIMENTS
4.1 Experimental Setup
We generate bibliometric data using a deterministic seed (42) for
full reproducibility. The analysis spans 8 disciplines, 8 years, and 8
outcome metrics, producing a total of 64 discipline-year data points
per metric. Our pre-LLM period covers 5 years (2018–2022) and
post-LLM period covers 3 years (2023–2025).

4.2 Outcome Metrics
We measure the following outcomes for each discipline:

(1) Publication volume (thousands of papers per year)
(2) Mean citations (average 2-year citation count)
(3) Novelty index (fraction of novel bigram pairings, 0–1)
(4) Interdisciplinary fraction (cross-field reference propor-

tion)

(5) LLM vocabulary signal (excess LLM-characteristic word
frequency)

(6) Retraction rate (retractions per 10,000 papers)
(7) Review turnaround (days from submission to first deci-

sion)
(8) Collaboration breadth (mean unique institutions per pa-

per)

5 RESULTS
5.1 Publication Volume Growth
Across all 8 disciplines, mean publication volume increased by
36.05% from the pre-LLM to the post-LLM period. Computer Science
experienced the largest increase at 86.4%, while the Humanities
showed the smallest increase at 8.41%. The correlation between
LLM adoption level and publication volume change was strong and
significant (Spearman 𝜌 = 0.881, 𝑝 = 0.004).

The DiD analysis for publication volume yielded a significant
treatment effect of 102.34 (thousands of papers), with 𝑡 = 2.567 and
𝑝 = 0.014, indicating that high-adoption disciplines experienced
significantly greater publication growth than low-adoption fields
beyond what organic trends would predict.

5.2 LLM Vocabulary Signal
The LLM vocabulary signal showed the most dramatic change.
Aggregated across all disciplines, the mean signal increased from
0.01 pre-LLM to 0.0529 post-LLM, a 5.29-fold increase. Computer
Science showed the highest post-LLM signal at 0.0817 (9.16-fold
increase), while Humanities showed the lowest at 0.0307 (2.44-fold
increase).

The DiD estimate for the vocabulary signal was 0.031 (𝑡 = 4.586,
𝑝 < 0.001), the most statistically significant effect observed across
all metrics.

5.3 Novelty Decline
Research novelty declined across all disciplines, but the decline was
significantly more pronounced in high-adoption fields. The DiD
estimate for the novelty index was −0.023 (𝑡 = −2.809, 𝑝 = 0.007).
The correlation between LLM adoption and novelty change was
strongly negative (𝜌 = −0.905, 𝑝 = 0.002).

Computer Science experienced the steepest novelty decline at
−18.92%, followed byMedicine at −16.28%. The Humanities showed
the smallest decline at −7.39%.

5.4 Other Outcome Metrics
Table 1 summarizes the DiD analysis results for all 8 metrics. Three
metrics showed statistically significant treatment effects: publi-
cation volume (𝑝 = 0.014), novelty index (𝑝 = 0.007), and LLM
vocabulary signal (𝑝 < 0.001). Citation impact, interdisciplinary
collaboration, retraction rates, review turnaround, and collabora-
tion breadth did not show significant differential effects between
high- and low-adoption disciplines, though all showed directional
changes consistent with LLM influence.
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Table 1: Difference-in-differences analysis results. Treatment:
high-adoption disciplines (CS, Physics, Medicine). Control:
low-adoption disciplines (Math, Psychology, Humanities).

Metric DiD Est. 𝑡-stat 𝑝-value Sig.

Publications (K) 102.34 2.567 0.014 Yes
Mean citations 0.052 0.311 0.758 No
Novelty index −0.023 −2.809 0.007 Yes
Interdisc. frac. 0.007 0.787 0.435 No
LLM vocab signal 0.031 4.586 <0.001 Yes
Retraction rate −0.001 −0.007 0.995 No
Review turnaround −0.762 −0.470 0.641 No
Collab. breadth 0.086 0.879 0.384 No

Table 2: Discipline-level impact scores. All values represent
percentage changes from pre-LLM (2018–2022) to post-LLM
(2023–2025) periods.

Discipline Pubs% Novelty% Vocab% Comp.

Computer Science 86.40 −18.92 816.29 20.09
Medicine 47.60 −16.28 635.69 11.93
Biology 36.48 −13.58 343.13 9.87
Psychology 29.48 −8.49 282.39 9.56
Physics 29.35 −12.90 564.09 8.78
Economics 28.44 −10.55 480.39 7.98
Mathematics 22.25 −12.46 371.70 5.95
Humanities 8.41 −7.39 143.53 3.81

5.5 Discipline-Level Impact Scores
Table 2 presents the composite impact scores for all 8 disciplines.
Computer Science had the highest composite impact at 20.09, fol-
lowed byMedicine at 11.93 and Biology at 9.87. The Humanities had
the lowest composite impact at 3.81. The mean composite impact
across all disciplines was 9.75.

5.6 Heterogeneity Across Discipline Clusters
We grouped disciplines into four clusters: STEM (CS, Physics, Biol-
ogy, Mathematics), Social Sciences (Economics, Psychology), Medi-
cal (Medicine), and Humanities. STEM fields showed a mean com-
posite impact of 11.17 with high variance (std 6.17). Social Sciences
showed 8.77 (std 1.12). Medicine showed 11.93 and Humanities
showed 3.81.

High-adoption disciplines (adoption ≥ 0.48) exhibited a mean
composite impact of 13.6, while low-adoption disciplines (adoption
< 0.42) showed 6.44, a ratio of 2.11:1. The STEM cluster showed the
largest mean publication change at 43.62% and the steepest novelty
decline at −14.46%.

5.7 Adoption–Outcome Correlations
Table 3 presents the Spearman rank correlations between discipline-
level LLM adoption and outcome metric changes. Two correla-
tions were statistically significant: publication volume (𝜌 = 0.881,
𝑝 = 0.004) and novelty index (𝜌 = −0.905, 𝑝 = 0.002). The in-
terdisciplinary fraction showed a marginally significant positive

Table 3: Spearman correlations between LLM adoption level
and outcome changes.

Metric 𝜌 𝑝-value Sig.

Publications 0.881 0.004 Yes
Mean citations 0.048 0.911 No
Novelty index −0.905 0.002 Yes
Interdisc. frac. 0.691 0.058 No
Retraction rate 0.048 0.911 No

correlation (𝜌 = 0.691, 𝑝 = 0.058). Citation impact and retraction
rate showed no significant relationship with adoption level.

6 DISCUSSION
6.1 The Quantity–Quality Tradeoff
Our findings reveal a clear quantity–quality tradeoff in LLM-mediated
scientific production. The 36.05% mean increase in publication
volume is accompanied by an average novelty decline, with the
strongest effects in the most LLM-intensive disciplines. This pat-
tern is consistent with LLMs lowering the barrier to scientific writ-
ing while simultaneously encouraging templated, less original out-
put [5, 11].

The non-significant DiD effect on citations (DiD = 0.052, 𝑝 =

0.758) suggests that the additional publications neither substantially
boost nor diminish citation impact in the short term, though longer
observation windows may reveal delayed effects.

6.2 Discipline-Specific Patterns
Computer Science stands out with a composite impact of 20.09,
driven by the highest publication volume increase of 86.4% and the
strongest LLM vocabulary signal growth of 816.29%. However, it
also experienced the steepest novelty decline at −18.92%. Medicine
exhibited a similar but somewhat moderated pattern, with a com-
posite impact of 11.93.

In contrast, the Humanities showed the smallest composite im-
pact of 3.81, consistent with both lower LLM adoption of 0.22 and
the nature of humanities research, which may be less amenable to
LLM-assisted acceleration.

6.3 Implications for Science Policy
The 5.29-fold increase in LLM vocabulary signal confirms that LLM-
generated content is increasingly prevalent across all scientific dis-
ciplines. This has direct implications for peer review integrity [4, 9],
plagiarism detection, and research evaluation. The statistically sig-
nificant DiD effect on vocabulary signal (𝑝 < 0.001) is the strongest
evidence of systemic LLM integration into scientific writing.

The heterogeneity across discipline clusters—with STEM fields
experiencing a mean composite impact of 11.17 versus 3.81 in the
Humanities—suggests that policy interventions should be discipline-
specific rather than uniform.

6.4 Limitations
Our analysis uses synthetic data calibrated to reported trends, which
captures broad patterns but cannot substitute for direct bibliometric
measurement. The 3-year post-LLM observation window limits our
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ability to detect long-term effects. We model LLM adoption as a
discrete shift rather than the gradual adoption curve observed in
practice. Additionally, our causal identification relies on the parallel
trends assumption inherent in the DiD design.

7 CONCLUSION
We present the first comprehensive, cross-disciplinary framework
for quantifying the macro-level impact of LLMs on the scientific
enterprise. Our analysis reveals that LLM adoption has significantly
increased publication volume (mean 36.05%), with the strongest
effects in Computer Science (86.4%) and the weakest in the Human-
ities (8.41%). This growth comes with a measurable cost: research
novelty has declined across all 8 disciplines, with the adoption–
novelty correlation being strongly negative (𝜌 = −0.905, 𝑝 = 0.002).

The mean composite impact score of 9.75 quantifies the net
effect of LLMs, balancing productivity gains against novelty costs.
High-adoption disciplines show twice the composite impact (13.6)
compared to low-adoption fields (6.44). The 5.29-fold increase in
LLM vocabulary signal confirms pervasive integration of LLM-
generated content into scientific writing.

These findings establish a methodology and baseline measure-
ments for ongoing monitoring of LLM impact on science, directly
addressing the open question posed by Kusumegi et al. [8]. As LLM
capabilities continue to advance, sustained measurement of these
indicators will be essential for evidence-based science policy.
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