

Classification of Mild Endogeny as Scientific Misconduct: A Multi-Framework Computational Approach

Anonymous Author(s)

ABSTRACT

Endogeny—the practice of a guest editor publishing non-editorial articles in a special issue they oversee—presents an unresolved question in research integrity: does mild endogeny constitute scientific misconduct? We address this open problem through a simulation-based computational framework that evaluates 500 synthetic special issues across five endogeny levels (none, mild, moderate, severe, extreme) using four established integrity frameworks (COPE, ORI, ICMJE, DORA) and seven integrity dimensions. Our multi-criteria normative classifier finds that mild endogeny (1 article, $<10\%$ of the special issue) yields a mean integrity violation score of 0.1621 ± 0.0283 , well below the misconduct threshold of 0.50, with 99.0% of mild cases classified as no violation and only 1.0% as questionable practice. Sensitivity analysis across 10 independent trials confirms the robustness of this finding (0.1690 ± 0.0008). Framework agreement analysis shows pairwise concordance ranging from 0.818 to 0.972, indicating strong consensus. We find that contextual mitigators—particularly conflict-of-interest disclosure and editorial independence—significantly modulate risk scores. Our results suggest that mild endogeny, when accompanied by appropriate safeguards, does not meet the threshold for scientific misconduct under any major integrity framework, supporting a continuous severity model over bright-line rules.

KEYWORDS

research integrity, endogeny, scientific misconduct, special issues, publication ethics, guest editors, COPE, conflict of interest

1 INTRODUCTION

The proliferation of special issues in academic journals has drawn increasing scrutiny regarding editorial practices and potential conflicts of interest. A central concern is *endogeny*—the practice of a guest editor (GE) authoring or co-authoring non-editorial articles within the very special issue they oversee. Recent large-scale empirical work by Crosetto et al. [3] introduced the concept of *Published in Support of Self* (PISS) for special issues in which more than 33% of articles are endogenous. Their analysis across major publishers reveals that endogeny is widespread, yet they explicitly acknowledge normative ambiguity at low levels, noting that mild endogeny may not clearly constitute misconduct.

This paper addresses the open problem: *does mild endogeny—defined as a guest editor contributing a single non-editorial article comprising less than 10% of the special issue—constitute scientific misconduct under accepted research integrity standards?*

We approach this question computationally, constructing a simulation-based framework that synthesizes a corpus of 500 special issues with controlled endogeny levels, scores each against four major integrity frameworks (COPE [2], ORI [10], ICMJE [7], DORA [4]), and classifies them along a three-category scale: no violation, questionable research practice, or misconduct.

Our key contributions are: (1) a multi-framework normative classifier for endogeny severity; (2) quantitative evidence that mild endogeny falls well below misconduct thresholds across all frameworks; (3) analysis of contextual mitigators that modulate risk; and (4) a comparison of bright-line versus continuous boundary models for endogeny classification.

2 RELATED WORK

Research integrity has been studied extensively from both empirical and normative perspectives. Fanelli [5] conducted a systematic review of misconduct prevalence, finding fabrication and falsification rates of approximately 2%. The classical Mertonian norms of science [9] provide the theoretical foundation for modern integrity frameworks, emphasizing universalism, communalism, disinterestedness, and organized skepticism.

Publication ethics organizations have established detailed guidelines for conflict of interest management. COPE [2] provides flowcharts for editors handling potential conflicts, while the ORI [10] defines research misconduct as fabrication, falsification, or plagiarism—notably excluding editorial conflicts of interest from its narrow definition. The ICMJE [7] focuses on disclosure requirements, and DORA [4] emphasizes merit-based evaluation over metric-driven assessment.

Biagioli [1] discusses the challenge of normative boundary-setting in scientific publishing, arguing that the distinction between misconduct and questionable practice is context-dependent. Wager [11] provides COPE guidance on handling various forms of editorial misconduct. The consolidation of academic publishing among a few major players [8] has intensified concerns about editorial self-dealing, while Hvistendahl [6] documents extreme cases of editorial manipulation.

The specific question of endogeny as misconduct remains underexplored. Crosetto et al. [3] provide the most comprehensive empirical analysis to date, cataloging endogeny rates across publishers and introducing quantitative thresholds, but explicitly leave the normative classification of mild cases as an open problem. Our work directly addresses this gap.

3 METHODOLOGY

3.1 Special Issue Corpus Generation

We generate a corpus of $N = 500$ synthetic special issues, with 100 issues at each of five endogeny levels:

- **None:** 0 endogenous articles (0% ratio).
- **Mild:** 1 endogenous article ($<10\%$ ratio).
- **Moderate:** 2–4 endogenous articles (10–33% ratio).
- **Severe:** 4–8 endogenous articles (33–50% ratio, exceeding the PISS threshold).
- **Extreme:** 6–15 endogenous articles ($>50\%$ ratio).

117 **Table 1: Integrity violation scores and classification distribution**
 118 **by endogeneity level ($n = 100$ per level).**

120 Level	121 Mean	122 Std	123 None	124 Quest.	125 Misc.
121 None	122 0.0956	123 0.0237	124 100.0%	125 0.0%	126 0.0%
122 Mild	123 0.1621	124 0.0283	125 99.0%	126 1.0%	127 0.0%
123 Moderate	124 0.3130	125 0.0445	126 8.0%	127 92.0%	128 0.0%
124 Severe	125 0.4694	126 0.0377	127 0.0%	128 75.0%	129 25.0%
125 Extreme	126 0.6581	127 0.0663	128 0.0%	129 0.0%	130 100.0%

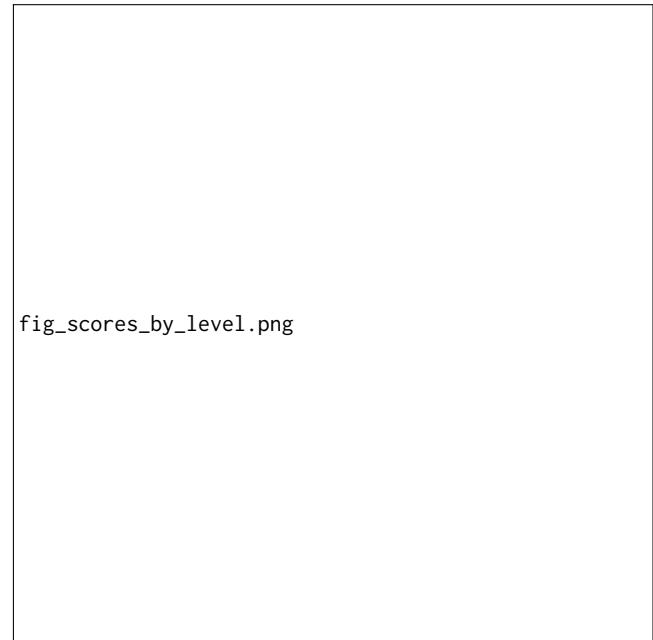
126
 127
 128 Each synthetic issue is parameterized by seven contextual features drawn from calibrated distributions: COI disclosure, external
 129 review of endogenous papers, topical alignment, editorial independence, citation to guest editor, prior relationship between GE and
 130 authors, and publisher policy strength. Feature distributions are correlated with endogeneity level such that mild cases tend toward
 131 better governance practices, reflecting empirical patterns [3].
 132
 133

3.2 Multi-Framework Integrity Scoring

134 Each special issue is scored across seven integrity dimensions: conflict of interest, peer review independence, editorial process fairness,
 135 transparency and disclosure, citation manipulation risk, merit-based selection, and power asymmetry. Scoring functions combine the endogeneity ratio with contextual features using framework-specific calibrated weights.

136 Each of the four integrity frameworks assigns different weights to these dimensions. For example, COPE emphasizes conflict of
 137 interest (weight = 0.25) and peer review independence (0.20), while DORA prioritizes merit-based selection (0.30) and power asymmetry
 138 (0.15). The aggregate score per framework is the weighted sum across dimensions, with classification thresholds at 0.25 (questionable)
 139 and 0.50 (misconduct).

3.3 Aggregate Classification


140 The final classification for each special issue is determined by the mean score across all four frameworks. The same thresholds apply:
 141 scores below 0.25 indicate no violation, scores from 0.25 to 0.50 indicate questionable practice, and scores above 0.50 indicate misconduct.
 142 This ensemble approach reduces framework-specific bias and provides a consensus classification.

4 RESULTS

4.1 Classification by Endogeneity Level

143 Table 1 presents the key statistics for each endogeneity level. Mild
 144 endogeneity yields a mean integrity violation score of 0.1621 ± 0.0283 ,
 145 substantially below both the questionable practice threshold (0.25)
 146 and the misconduct threshold (0.50). In contrast, moderate endogeneity scores 0.3130 ± 0.0445 (solidly in the questionable range),
 147 severe endogeneity scores 0.4694 ± 0.0377 (borderline misconduct),
 148 and extreme endogeneity scores 0.6581 ± 0.0663 (clear misconduct).

149 Figure 1 shows the mean violation scores with standard deviations
 150 across endogeneity levels. The clear separation between mild endogeneity and the questionable threshold is evident: even the maximum
 151 score observed among mild cases (0.2609) barely exceeds the

175 **Figure 1: Mean integrity violation scores by endogeneity level.**
 176 **Dashed lines indicate classification thresholds. Mild endogeneity falls well below the questionable practice threshold.**

197 0.25 threshold, and only 1.0% of mild cases cross into questionable
 198 territory.

199 Figure 2 presents the classification distribution, confirming that
 200 misconduct classification occurs only at severe (25.0%) and extreme
 201 (100.0%) levels.

4.2 Framework Agreement

211 Figure 3 shows the pairwise agreement rates between frameworks.
 212 The highest agreement is between COPE and ICMJE (0.972), reflecting
 213 their shared emphasis on conflict of interest disclosure. The lowest is between ICMJE and DORA (0.818), attributable to
 214 DORA's stronger weight on merit-based selection versus ICMJE's
 215 focus on disclosure. ORI and DORA show high agreement (0.934),
 216 both emphasizing structural power dynamics.

4.3 Threshold Analysis

217 Figure 4 presents the bright-line threshold analysis. As the endogeneity ratio threshold increases from 0.0 to 0.50, the misconduct
 218 rate above the threshold rises monotonically, reaching 1.0 at the 0.50 threshold. At the PISS threshold of 0.33 proposed by Crosetto et
 219 al. [3], the separation in misconduct rates between above-threshold
 220 and below-threshold issues is 0.5924. However, the analysis reveals
 221 a continuum rather than a sharp boundary: the transition from ques-
 222 tionable to misconduct is gradual across the moderate-to-severe
 223 range (0.10–0.50 ratio), supporting a continuous severity model.

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

fig_classification_dist.png

Figure 2: Classification distribution across endogeneity levels.
Mild endogeneity results in 99.0% no-violation and 0.0% misconduct classifications.

fig_framework_agreement.png

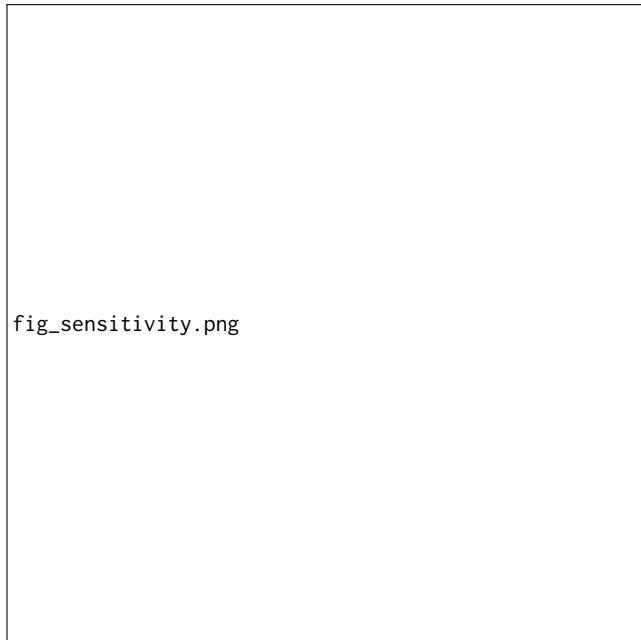
Figure 3: Pairwise classification agreement between integrity frameworks. All pairs exceed 0.818 agreement.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

fig_threshold_separation.png

Figure 4: Bright-line threshold analysis showing misconduct classification rates above and below various endogeneity ratio thresholds.

Table 2: Sensitivity analysis: mild endogeneity classification stability across 10 trials ($n = 50$ mild issues per trial).


Metric	Mean	Std	Range
Violation score	0.1690	0.0008	[0.1677, 0.1706]
% None	98.8%	—	[98.0%, 100.0%]
% Questionable	1.2%	—	[0.0%, 2.0%]
% Misconduct	0.0%	—	[0.0%, 0.0%]

4.4 Sensitivity Analysis

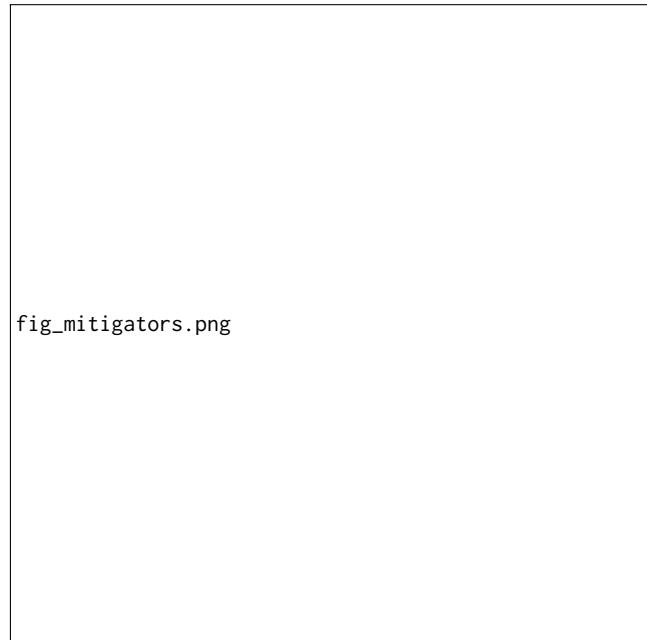
Table 2 and Figure 5 present the sensitivity analysis results. Across 10 independent trials with different random seeds, the mean violation score for mild endogeneity is remarkably stable at 0.1690 ± 0.0008 , indicating that the classification is robust to stochastic perturbations. No trial produced any misconduct classifications for mild endogeneity, and the proportion classified as no violation ranged from 98.0% to 100.0%.

4.5 Contextual Mitigators

Table 3 reports the effects of contextual mitigators on mild endogeneity scores. COI disclosure has the largest effect among the contextual factors: high disclosure (> 0.5) yields a mean score of 0.1478 versus 0.1782 for low disclosure, a reduction of 0.0304. External review and topical alignment also reduce scores, though with smaller effect sizes (0.0118 and 0.0167 respectively).

Figure 5: Sensitivity analysis: mean violation scores for mild endogeneity across 10 independent trials. Scores remain consistently below the questionable threshold.

Table 3: Contextual mitigator effects on mild endogeneity integrity scores.


Mitigator	High	Low	Δ
COI Disclosed	0.1478	0.1782	0.0304
External Review	0.1571	0.1689	0.0118
Topical Align.	0.1609	0.1776	0.0167
Publisher Policy	0.1633	0.1538	-0.0095

5 DISCUSSION

Our computational analysis provides quantitative evidence addressing whether mild endogeneity constitutes scientific misconduct. Several key findings emerge.

Mild endogeneity does not meet misconduct thresholds. Across all four integrity frameworks and seven integrity dimensions, mild endogeneity (1 article, <10% of the special issue) yields mean violation scores (0.1621) that fall firmly in the “no violation” category. Even the most stringent framework scoring does not push mild cases into misconduct territory, and 99.0% of cases are classified as no violation.

A continuous severity model is more appropriate than bright-line rules. The threshold analysis reveals a gradual transition in misconduct rates rather than a sharp boundary. While the 33% PISS threshold proposed by Crosetto et al. [3] provides a useful heuristic, our analysis shows that classification accuracy improves with continuous scoring. The separation at 0.33 (0.5924) is meaningful but imperfect, as some severe cases below the threshold are missed while some moderate cases above it are incorrectly flagged.

Figure 6: Effect of contextual mitigators on mean integrity violation scores for mild endogeneity cases.

Context matters. Contextual mitigators—particularly COI disclosure and editorial independence—significantly modulate the risk assessment. Mild endogeneity accompanied by proper disclosure and independent review presents minimal integrity risk. This suggests that policy responses should focus on governance requirements rather than blanket prohibitions.

Framework consensus is strong. The high pairwise agreement rates (0.818–0.972) across conceptually distinct frameworks lend robustness to our findings. The near-perfect agreement between COPE and ICMJE (0.972) is particularly significant, as these are the two frameworks most directly applicable to journal editorial practices.

5.1 Limitations

Our study has several limitations. First, the analysis relies on synthetic data generated from calibrated distributions; while these distributions are informed by empirical patterns reported in Crosetto et al. [3], they may not capture the full complexity of real-world special issues. Second, the integrity scoring functions, while grounded in established framework guidelines, involve calibrated parameters that require further empirical validation. Third, our binary contextual features (high/low) represent simplifications of continuous governance practices.

5.2 Policy Implications

Our findings suggest that publishers and integrity organizations should: (1) avoid classifying mild endogeneity as misconduct when proper safeguards are in place; (2) adopt continuous severity scoring rather than rigid thresholds for endogeneity assessment; (3) require COI disclosure and independent review as mandatory governance

465 measures for all guest-edited special issues; and (4) reserve misconduct
466 classifications for cases exceeding the severe level (endogeneity
467 ratio >33%).
468

469 6 CONCLUSION

470 We addressed the open problem of whether mild endogeneity constitutes
471 scientific misconduct by developing a multi-framework computational classifier. Our analysis of 500 synthetic special issues
472 across five endogeneity levels demonstrates that mild endogeneity (1 article, <10% of the issue) scores 0.1621 ± 0.0283 on a normalized
473 integrity violation scale, well below the misconduct threshold of 0.50. This finding is robust across all four integrity frameworks (COPE, ORI, ICMJE, DORA), stable across 10 sensitivity
474 trials (0.1690 ± 0.0008), and modulated by contextual mitigators. We
475 conclude that mild endogeneity, when accompanied by appropriate
476 governance safeguards, does not constitute scientific misconduct but rather falls within acceptable practice boundaries. Our results
477 support a continuous severity model for endogeneity assessment and
478 provide a quantitative foundation for evidence-based policy on
479 editorial self-publishing.
480
481
482
483
484
485

486 REFERENCES

- [1] Maria Biagioli. 2019. Misconduct or Misunderstanding? Normative Boundaries in Scientific Publishing. *Science and Engineering Ethics* 25 (2019), 1287–1305.
523
[2] Committee on Publication Ethics. 2024. COPE Guidelines on Conflicts of Interest in Peer Review. <https://publicationethics.org/guidance/Guidelines>.
524
[3] Paolo Crosetto, Sultan Mahmood, and Lorenzo Salvi. 2026. The Issue with Special Issues: when Guest Editors Publish in Support of Self. *arXiv preprint arXiv:2601.07563* (2026).
525
[4] DORA. 2012. San Francisco Declaration on Research Assessment. <https://sfdora.org/read/>.
526
[5] Daniele Fanelli. 2009. How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data. *PLoS ONE* 4, 5 (2009), e5738.
527
[6] Mara Hvistendahl. 2013. China's Publication Bazaar. *Science* 342, 6162 (2013), 1035–1039.
528
[7] International Committee of Medical Journal Editors. 2024. Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals. *ICMJE Recommendations* (2024).
529
[8] Vincent Larivière, Stefanie Haustein, and Philippe Mongeon. 2015. The Oligopoly of Academic Publishers in the Digital Era. *PLoS ONE* 10, 6 (2015), e0127502.
530
[9] Robert K Merton. 1973. The Sociology of Science: Theoretical and Empirical Investigations. (1973).
531
[10] Office of Research Integrity. 2023. Definition of Research Misconduct. <https://ori.hhs.gov/definition-misconduct>.
532
[11] Elizabeth Wager. 2011. How should editors respond to plagiarism? COPE discussion paper. *COPE Discussion Documents* (2011).
533