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Atmosphere Retention of Rocky Planets Around M Dwarfs: A
Computational Population Study
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ABSTRACT
We present a computational framework for assessing atmospheric
retention of rocky exoplanets around M dwarfs, addressing the
key open question of whether small planets orbiting mid-to-late
M dwarfs can maintain atmospheres under intense XUV irradia-
tion. Through population synthesis of 5,000 planet-star systems
spanning spectral types M0–M8 and orbital periods 0.5–50 days,
we evaluate retention using the cosmic shoreline framework and
energy-limited atmospheric escape. We find an overall retention
fraction of 97.6%, with habitable-zone planets achieving 100% re-
tention. Retention rates range from 95.3% (M1) to 99.8% (M7), indi-
cating that atmospheric retention is favorable across all M dwarf
subtypes for the period ranges considered. Analysis of 10 known
targets—including TOI-6716 b, TRAPPIST-1 e/f/g, LHS 1140 b, and
Proxima Centauri b—predicts atmospheric retention for all, with
fluence ratios 0.001–0.21 relative to the cosmic shoreline threshold.
JWST observability analysis identifies 1,324 targets (26.5%) with
Transmission Spectroscopy Metric (TSM) > 10, including 90 in
the habitable zone, providing a prioritized sample for atmospheric
characterization campaigns.

KEYWORDS
exoplanets, M dwarfs, atmospheric escape, cosmic shoreline, JWST,
habitable zone

1 INTRODUCTION
M dwarfs constitute approximately 70% of all stars in the Galaxy
and are the most common hosts of rocky, potentially habitable ex-
oplanets [4]. However, their habitable zones are located close-in
(0.05–0.2 AU), exposing orbiting planets to intense extreme ultra-
violet (XUV) radiation that drives atmospheric escape [1, 6]. The
discovery of temperate planets around fully convective M dwarfs,
including the Earth-sized TOI-6716 b [7], underscores the urgency
of determining whether such planets can retain atmospheres.

The cosmic shoreline framework [8] provides a diagnostic bound-
ary in (cumulative XUV fluence, escape velocity) space that sep-
arates atmosphere-bearing from atmosphere-free worlds. Planets
receiving XUV fluence exceeding a threshold set by their gravita-
tional binding energy are predicted to lose their atmospheres. For
M dwarfs, the prolonged pre-main-sequence saturated XUV phase
significantly enhances cumulative irradiation [1], raising concerns
that rocky planets in M dwarf habitable zones may be stripped of
their atmospheres.

We address this open problem through a comprehensive com-
putational study combining population synthesis, energy-limited
escape modeling, cosmic shoreline analysis, and JWST observability
assessment.

2 METHODS
2.1 Stellar Models
We parameterize M dwarfs from M0 to M9 using empirical mass-
spectral type relations [4]:𝑀★ = 0.60−0.055×SpT𝑀⊙ . Radii follow
the Boyajian relation, and luminosities use the main-sequence mass-
luminosity relation. XUV luminosity evolution employs a saturated-
then-declining model [6]:

𝐿XUV (𝑡) =
{
𝐿XUV,sat 𝑡 < 𝜏sat
𝐿XUV,sat (𝑡/𝜏sat)−1.5 𝑡 ≥ 𝜏sat

(1)

where 𝐿XUV,sat = 10−3𝐿bol and 𝜏sat = 0.1+ 0.3× SpT Gyr, reflecting
the extended saturation of later M dwarfs.

2.2 Cosmic Shoreline
Following Zahnle & Catling [8], the cosmic shoreline threshold is:

log10 (𝐹threshold) = 4 log10 (𝑣esc) + 18 (2)

where 𝐹threshold is the cumulative XUV fluence [erg cm−2] and 𝑣esc
is the surface escape velocity [km s−1]. Planets with cumulative
fluence exceeding this threshold are predicted to have lost their
atmospheres.

2.3 Energy-Limited Escape
Atmospheric mass loss rates follow the energy-limited formula-
tion [3, 5]:

¤𝑀 =
𝜖𝜋𝑅3𝑝𝐹XUV

𝐺𝑀𝑝𝐾tide
(3)

where 𝜖 = 0.15 is the heating efficiency, and we integrate over
the stellar XUV evolution to compute total atmosphere loss. Initial
atmosphere mass fractions are set to 1% of the planet mass.

2.4 Population Synthesis
We generate 5,000 random planet-star systems with uniform spec-
tral types (M0–M9), log-uniform orbital periods (0.5–50 days), uni-
form planet masses (0.5–5.0 𝑀⊕), and uniform ages (1–10 Gyr).
Rocky planet radii follow 𝑅 ∝ 𝑀0.27 [9].

3 RESULTS
3.1 Population-Level Retention
The population synthesis yields an overall atmospheric retention
fraction of 97.6% across 5,000 simulated systems. Habitable zone
planets (equilibrium temperature 200–350 K) achieve 100% reten-
tion. Figure 1 shows the cosmic shoreline diagram with the simu-
lated population.

3.2 Retention by Spectral Type
Retention fractions by spectral type (Figure 2) range from 95.3%
(M1) to 99.8% (M7). The counter-intuitive result that later M dwarfs
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Figure 1: Cosmic shoreline diagram for 5,000 simulated rocky
planets aroundMdwarfs. Blue: retained; red: lost. The dashed
line marks the empirical cosmic shoreline. Stars indicate
known targets.

Figure 2: Atmospheric retention fraction byM dwarf spectral
type. Retention exceeds 95% for all subtypes.

show higher retention rates arises from their lower bolometric (and
hence absolute XUV) luminosities, which dominate over the longer
saturation timescales.

3.3 Retention Boundary
Figure 3 maps the retention boundary in period–spectral type space
for a 1𝑀⊕ planet at 5 Gyr age. The boundary separating retained
from lost atmospheres lies at very short periods (𝑃 < 0.5–2 days),
well inside the habitable zone for all M dwarf subtypes.

3.4 Known Target Analysis
All 10 analyzed targets are predicted to retain atmospheres (Table 1).
Fluence ratios (cumulative XUV fluence / shoreline threshold) range
from 0.001 (LHS 1140 b) to 0.210 (GJ 1132 b). TRAPPIST-1 e/f/g show

Figure 3: Atmosphere retentionmap in (period, spectral type)
space. Green: retained; red: lost. The critical period boundary
lies at 𝑃 ≲ 1 day.

Table 1: Cosmic shoreline analysis of known M dwarf rocky
planets.

Planet 𝑣esc Fluence 𝑇eq Retained
[km/s] Ratio [K]

TOI-6716 b 11.2 0.030 358 Yes
TRAPPIST-1 e 9.7 0.061 326 Yes
TRAPPIST-1 f 11.2 0.020 284 Yes
TRAPPIST-1 g 12.0 0.010 258 Yes
LHS 1140 b 16.8 0.001 273 Yes
Proxima Cen b 11.5 0.023 343 Yes
GJ 1132 b 12.9 0.210 721 Yes
GJ 486 b 15.0 0.120 768 Yes
Gliese 12 b 11.0 0.027 363 Yes

fluence ratios of 0.061, 0.020, and 0.010 respectively, well below the
cosmic shoreline.

3.5 JWST Observability
Of 5,000 simulated planets, 1,324 (26.5%) have TSM > 10 and re-
tained atmospheres, making them viable JWST transmission spec-
troscopy targets [2]. Among these, 90 lie within the habitable zone
(Figure 4).

4 DISCUSSION
Our results indicate that atmospheric retention for rocky planets
around M dwarfs is broadly favorable across the period range of
0.5–50 days and all spectral subtypes M0–M9. The 97.6% overall
retention fraction suggests that the majority of rocky M dwarf
planets should possess atmospheres, supporting ambitious JWST
characterization programs.

The high retention rates reflect the cosmic shoreline’s strong
dependence on escape velocity (𝑣4esc): even modest escape velocities
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Figure 4: JWST observability breakdown by spectral type.
Gold bars indicate targets with TSM > 10 and retained atmo-
spheres.

of 6–15 km/s for 0.5–5𝑀⊕ planets provide substantial gravitational
binding against XUV-driven escape. Late M dwarfs, despite their ex-
tended XUV saturation phases, deliver lower absolute XUV fluences
due to their intrinsically low luminosities.

Key caveats include: (1) our model uses a single heating effi-
ciency 𝜖 = 0.15; higher values would reduce retention rates; (2)
we assume energy-limited escape throughout, whereas radiation-
recombination limited escape may apply for close-in planets; (3)
coronal mass ejection (CME) stripping is not modeled; and (4) initial
atmospheric mass is assumed uniform at 1% of planet mass.

5 CONCLUSION
(1) Rocky planets around M dwarfs retain atmospheres at a

rate of 97.6%, with habitable-zone retention at 100%.
(2) All 10 known targets analyzed (including TRAPPIST-1 e/f/g,

LHS 1140 b, TOI-6716 b) are predicted to retain atmospheres,
with fluence ratios 0.001–0.210 below the cosmic shoreline.

(3) Retention varies from 95.3% (M1) to 99.8% (M7), with later
M dwarfs favored due to their lower absolute luminosities.

(4) Of the simulated population, 26.5% (1,324 planets) are viable
JWST targets with TSM > 10, including 90 in the habitable
zone.
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