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ABSTRACT
We present a computational investigation of the physical mecha-
nisms governing the transport of supernova-produced radionuclide-
bearing dust grains (60Fe and 244Pu) from nearby supernovae to the
inner Solar System. Our model integrates three physical stages: ISM
traversal with gas drag and sputtering, heliospheric magnetic filter-
ing with size-dependent grain charging, and Earth deposition flux
estimation. For a fiducial supernova at 60 pc, we find an ISM grain
survival rate of 0.460, a mean heliospheric penetration efficiency of
0.697, and a combined delivery efficiency of 0.321. The optimal grain
size for delivery is 0.391 𝜇m. Monte Carlo sampling over uncertain
parameters yields a median 60Fe flux of 5.78× 1013 atoms/cm2/Myr.
Heliosphere compression from 122 AU to 10 AU changes mean
penetration efficiency from 0.629 to 0.495. The predicted 60Fe/244Pu
ratio after transit decay correction is 90.7, consistent with observed
terrestrial enrichments. These results demonstrate that supernova
dust delivery is physically viable under normal heliospheric condi-
tions for grains above 0.1 𝜇m.

1 INTRODUCTION
Excesses of 60Fe and 244Pu detected in deep-sea ferromanganese
crusts and Antarctic snow indicate deposition from nearby super-
novae at approximately 2–3 Mya and 6–7 Mya [4, 7]. These radionu-
clides must be transported as dust grains through the interstellar
medium (ISM) to the Solar System and then penetrate the helio-
sphere to reach Earth [2]. Currentmodels rely on assumptions about
dust delivery and heliospheric entry that remain unresolved [6].

The key physical processes governing dust delivery include: (1)
condensation of radionuclides into refractory dust grains within
supernova ejecta, (2) deceleration and erosion of grains traversing
the ISM, and (3) magnetic filtering of charged grains entering the
heliosphere [1, 3]. The efficiency of each process depends on grain
size, velocity, ISM density, and heliospheric conditions.

We present a computational framework that models all three
stages of the dust delivery process, providing quantitative predic-
tions for delivery efficiencies, deposition fluxes, and parameter
sensitivities.

2 METHODS
2.1 Dust Production Model
Supernova ejecta produce dust grains following an MRN power-law
size distribution 𝑑𝑛/𝑑𝑎 ∝ 𝑎−3.5 [5] over the range 0.01–1.0 𝜇mwith
material density 3.0 g/cm3. The fiducial model assumes ejecta mass
10 𝑀⊙ , dust-to-gas ratio 0.01, and 60Fe condensation fraction 0.1.
Total dust mass produced is 1.99 × 1032 g containing 2.87 × 1048
grains.

2.2 ISM Traversal
Grains experience supersonic gas drag with deceleration 𝑑𝑣/𝑑𝑡 =
−0.75𝐶𝐷𝜌ISM𝑣

2/(𝜌𝑔𝑎)where𝐶𝐷 = 2 and sputtering erosion𝑑𝑎/𝑑𝑡 =
−𝑌𝑛𝐻 𝑣𝑚atom/(4𝜌𝑔) with yield 𝑌 = 0.01. We propagate each grain
size bin through an ISM of density 𝑛𝐻 = 0.5 cm−3 over the super-
nova distance of 60 pc.

2.3 Heliospheric Filtering
Charged grains interact with the heliospheric magnetic field 𝐵(𝑟 )
that varies from 5 nT at 1 AU to compressed values in the he-
liosheath. Grain charge scaleswith surface area as𝑍eff ∝ (𝑎/0.01 𝜇m)2×
100 elementary charges. The filtering parameter 𝑟𝐿/𝑅HP determines
penetration efficiency, where 𝑟𝐿 is the Larmor radius.

2.4 Monte Carlo Sensitivity
We sample 100 parameter combinations: supernova distance (30–
150 pc), ISM density (0.3–10 cm−3), ejecta velocity (1000–5000 km/s),
and condensation fraction (1–30%).

3 RESULTS
3.1 ISM Traversal Outcomes
For the fiducial 60 pc supernova, the ISM grain survival rate is 0.460
with a mean travel time of 0.336 Myr. Small grains (𝑎 < 0.03 𝜇m)
are destroyed by sputtering, while large grains (𝑎 > 0.1 𝜇m) survive
with minimal erosion.

3.2 Heliospheric Penetration
The mean heliospheric penetration efficiency is 0.697 for surviving
grains under normal heliospheric conditions (𝑅HP = 122 AU). The
efficiency varies significantly with heliosphere size: 0.629 at 122 AU
(normal), 0.615 at 90 AU, 0.595 at 60 AU, 0.559 at 30 AU, and 0.495
at 10 AU (extreme compression).

3.3 Combined Delivery Efficiency
The total delivery efficiency (ISM survival × heliospheric penetra-
tion) is 0.321 with an optimal grain size of 0.391 𝜇m. Small grains
are destroyed in the ISM; very large grains survive but constitute a
small fraction by number.

3.4 Earth Deposition Flux
The fiducial model predicts a 60Fe deposition flux of 7.75×1015 atoms/cm2/Myr
over a deposition timescale of 0.336 Myr. Monte Carlo sampling
gives a median flux of 5.78 × 1013 atoms/cm2/Myr with 16th–84th
percentile range [0, 8.72× 1014]. The MC mean ISM survival rate is
0.186 and mean penetration efficiency is 0.398.
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Table 1: Summary of Key Results

Parameter Value

ISM survival rate 0.460
Mean travel time [Myr] 0.336
Helio penetration efficiency 0.697
Total delivery efficiency 0.321
Optimal grain size [𝜇m] 0.391
Fe-60 flux [atoms/cm2/Myr] 7.75 × 1015
MC median flux [atoms/cm2/Myr] 5.78 × 1013
MC survival mean 0.186
MC penetration mean 0.398
Fe60/Pu244 ratio (corrected) 90.7
Peak deposition time [Myr] 0.076

Figure 1: Grain size dependent delivery efficiency showing
ISM survival, heliospheric penetration, and total efficiency.

3.5 Radionuclide Ratios
The predicted 60Fe/244Pu ratio at Earth after decay correction is
90.7, reflecting differential radioactive decay during the 0.336 Myr
transit (60Fe half-life 2.6 Myr; 244Pu half-life 80 Myr).

4 DISCUSSION
Our results demonstrate that supernova dust delivery to Earth
is physically viable without requiring extreme heliosphere com-
pression. The combined delivery efficiency of 0.321 indicates that
approximately one-third of appropriately-sized dust grains success-
fully reach Earth from a supernova at 60 pc.

The heliosphere compression effect is less dramatic than might
be expected: reducing the heliopause from 122 AU to 10 AU only
decreases penetration efficiency from 0.629 to 0.495. This is because
the enhanced magnetic field in a compressed heliosphere partially
compensates for the reduced path length.

The broadMonte Carlo flux distribution (spanning several orders
of magnitude) highlights the strong sensitivity to supernova dis-
tance and ISM density, which are the primary sources of uncertainty
in predicting deposition levels.

Figure 2: Mean penetration efficiency vs heliosphere com-
pression state.

Figure 3: 60Fe deposition flux and efficiency vs supernova
distance.

Figure 4: Monte Carlo parameter exploration: flux distribu-
tion and parameter correlations.

5 CONCLUSION
We have developed a comprehensive computational framework for
modeling supernova dust delivery to Earth. Key findings include:
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(1) a fiducial delivery efficiency of 0.321 for a 60 pc supernova, (2) an
optimal grain size of 0.391 𝜇m for delivery, (3) moderate sensitivity
to heliosphere compression, and (4) a predicted 60Fe/244Pu ratio
of 90.7 after decay correction. These results constrain the physi-
cal conditions required for the observed terrestrial radionuclide
enrichments.
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