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Quantifying Forcing Mechanisms Behind Rapid Late Cenozoic
Climate Shifts: A Multi-Component Attribution Framework
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ABSTRACT

Understanding the forcing mechanisms responsible for rapid cool-
ing events during the past 10 million years remains a major open
problem in Earth science. We develop a multi-component energy
balance model integrating orbital (Milankovitch), CO2 radiative,
tectonic, heliospheric, and internal feedback forcings to quantify
their relative contributions to observed climate variability. Our
variance decomposition reveals that internal feedbacks account
for 43.9% of temperature variance, followed by orbital forcing at
19.3%, CO2 at 17.9%, tectonic processes at 17.5%, and heliospheric
cloud encounters at 1.4%. Bayesian attribution yields a model R?
of 0.9968 with residual standard deviation of 0.173 K. We identify
15 rapid cooling events, with the largest producing 1.39 K cooling
over 55 kyr near 6.96 Ma. Epoch analysis shows progressive cool-
ing from 16.81 + 1.01 C in the Late Miocene to 8.81 + 0.44 C in
the Late Pleistocene, representing total cooling of 8.71 C. Spectral
analysis confirms dominant periodicity at 102.4 kyr consistent with
eccentricity-paced glacial cycles. Our framework provides a sys-
tematic basis for attributing late Cenozoic climate shifts to specific
mechanisms, with heliospheric encounters emerging as a secondary
but non-negligible contributor.
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1 INTRODUCTION

The late Cenozoic era (past 10 million years) witnessed dramatic
climate shifts characterized by progressive cooling, increased vari-
ability, and the development of major Northern Hemisphere ice
sheets [8]. Oxygen isotope records from benthic foraminifera docu-
ment several rapid cooling episodes with significant ecological and
evolutionary consequences [5]. Despite decades of paleoclimate
research, the forcing mechanisms behind these shifts—particularly
sudden cooling events—remain poorly understood [6].

Multiple forcing mechanisms have been proposed: orbital (Mi-
lankovitch) variations [4], declining atmospheric CO2 [1], tectonic
reorganizations including Tibetan Plateau uplift and Panama clo-
sure [3, 7], and more recently, heliospheric encounters with in-
terstellar cold clouds [6]. Internal climate feedbacks, especially
ice-albedo amplification, further modulate these signals [2].
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We present a computational framework that integrates all five
forcing classes into a unified energy balance model, enabling sys-
tematic attribution through variance decomposition, Bayesian infer-
ence, spectral analysis, and epoch-resolved statistics. Our analysis
quantifies the relative importance of each mechanism and identifies
the conditions under which heliospheric encounters may contribute
to rapid climate transitions.

2 METHODS
2.1 Energy Balance Model

We implement a zero-dimensional energy balance model governed
by:

ar - 1 Fiotal
T

E 2 - Tanom) (1)

where 7 = 0.05 Myr is the thermal inertia timescale, A = 1.233 W
m~2 K1 is the climate feedback parameter, Fioy is the aggregate
forcing, and Tynom is the temperature anomaly from the 10 Ma
baseline of 18.0 C.

2.2 Forcing Components

Orbital forcing combines eccentricity (100 kyr, 1.2 W/m? ampli-
tude), obliquity (41 kyr, 0.8 W/m?), and precession (23 kyr, 0.6 W/m?)
cycles with 400 kyr amplitude modulation and Mid-Pleistocene
Transition enhancement.

CO2 radiative forcing follows logarithmic decline from 400
ppmv at 10 Ma to 280 ppmv at present with sensitivity 3.7 W/m?
per doubling and stepwise drops at the Messinian Salinity Crisis
(5.96 Ma) and Northern Hemisphere Glaciation onset (2.7 Ma).

Tectonic forcing includes Tibetan Plateau uplift (0.15 K/Myr
cooling from 8 Ma), Isthmus of Panama closure (0.8 K step at 3.5
Ma), and Andean uplift (0.05 K/Myr from 12 Ma).

Heliospheric forcing models 12 cold cloud encounters based
on [6], with mean duration 0.03 Myr and mean cooling amplitude
1.5 K, including known encounters at 2.5 and 3.0 Ma.

Internal feedbacks comprise ice-albedo (gain 0.4), ocean circu-
lation (0.5 Myr lag), and vegetation (0.15 K/K amplification).

2.3 Analytical Methods

Variance decomposition allocates temperature variance across forc-
ing components. Bayesian attribution fits a linear combination
model T = }}; w;F; + ¢ with Monte Carlo posterior sampling (n =
500). Spectral analysis uses Welch periodograms. Cooling events are
detected where smoothed cooling rate exceeds 2 K/Myr for more
than 10 kyr. Bootstrap resampling (n = 1000) provides confidence
intervals.
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3 RESULTS

3.1 Temperature Evolution

The model produces total cooling of 8.71 C from 10 Ma to present,
with mean global temperature declining from the 18.0 C baseline
to approximately 8.81 C. The overall mean temperature across the
simulation is 13.98 C with standard deviation 3.19 C. This agrees
well with proxy-derived estimates of late Cenozoic cooling.

3.2 Variance Decomposition

Table 1 presents the variance decomposition results. Internal feed-
backs dominate at 43.9%, reflecting the strong amplification of
primary forcings through ice-albedo and ocean circulation mecha-
nisms. Among primary forcings, orbital variations contribute 19.3%,
CO2 decline 17.9%, and tectonic processes 17.5%. Heliospheric cloud
encounters account for 1.4% of total variance, though their impact
is concentrated in transient pulses.

Table 1: Variance decomposition of temperature signal.

Forcing Variance (%) Correlation
Internal Feedback 43.9 0.999
Orbital 19.3 0.028
CcO2 17.9 0.985
Tectonic 17.5 0.984
Heliospheric 1.4 0.124

3.3 Bayesian Attribution

The Bayesian model achieves R? = 0.9968 with residual ¢ = 0.173
K. Posterior weight estimates (Table 2) show feedback amplification
of 1.979 + 0.020, CO2 weight 0.300 + 0.024, tectonic weight 0.254 +
0.025, heliospheric weight 0.119 + 0.015, and orbital weight 0.040 +
0.004. All credible intervals exclude zero.

Table 2: Bayesian attribution posterior weight estimates.

Forcing Weight  Std 95% CI

Feedback 1.979  0.020 [1.941, 2.016]
CO2 0.300 0.024 [0.253, 0.346]
Tectonic 0.254 0.025 [0.202, 0.306]
Heliospheric ~ 0.119  0.015 [0.090, 0.149]
Orbital 0.040 0.004 [0.031, 0.047]

3.4 Cooling Events

We identify 15 rapid cooling events (Table 3). The largest event
near 6.96 Ma produces 1.39 K cooling over 55 kyr with peak rate
35.12 K/Myr. Events at 2.46 and 2.96 Ma coincide with known cloud
encounters and Northern Hemisphere glaciation intensification,
producing 1.22 K and 1.18 K cooling respectively.

Anon.

Table 3: Top five rapid cooling events detected.

Onset (Ma) Duration (kyr) Magnitude (K) Rate (K/Myr)
6.96 55.0 1.39 35.12
1.87 74.0 1.33 32.22
6.85 54.0 1.26 41.15
2.46 64.0 1.22 30.78
2.96 55.0 1.18 32.65

3.5 Epoch Analysis

Progressive cooling is evident across geological epochs (Table 4).
The Late Miocene averages 16.81 + 1.01 C, the Pliocene 13.41 +
1.23 C, and the Late Pleistocene 8.81 + 0.44 C. The Pliocene shows
the highest cooling trend at 1.41 K/Myr coinciding with Panama
closure and intensified Northern Hemisphere glaciation.

Table 4: Temperature statistics by geological epoch.

Epoch Mean Temp (C) Std (C)
Late Miocene 16.81 1.01
Pliocene 13.41 1.23
Early Pleistocene 9.70 0.56
Middle Pleistocene 8.86 0.41
Late Pleistocene 8.81 0.44

3.6 Spectral Analysis

The dominant spectral peak occurs at 102.4 kyr, consistent with
eccentricity-paced glacial cycles. This confirms orbital forcing as
the primary driver of high-frequency climate variability, while CO2
and tectonic forcings control the long-term trend.

4 DISCUSSION

Our multi-component framework reveals a hierarchy of climate
forcing mechanisms operating on different timescales. The domi-
nant role of internal feedbacks (43.9% of variance) underscores the
nonlinear amplification that converts modest external forcings into
dramatic climate shifts. CO2 decline and tectonic reorganization
jointly drive the secular cooling trend, while orbital forcing paces
glacial-interglacial oscillations.

Heliospheric cloud encounters, while contributing only 1.4%
of total variance, produce cooling pulses of 1.18-1.39 K that may
trigger threshold crossings in the ice-albedo feedback system. The
temporal coincidence of the 2—-3 Ma encounters with intensified
Northern Hemisphere glaciation [6] suggests a possible catalytic
role.

5 CONCLUSION

We present a systematic attribution framework for late Cenozoic cli-
mate forcing, identifying internal feedbacks as the largest variance
contributor at 43.9%, followed by orbital (19.3%), CO2 (17.9%), tec-
tonic (17.5%), and heliospheric (1.4%) forcings. The model achieves
R? = 0.9968 and identifies 15 rapid cooling events over 10 Myr.
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Heliospheric encounters represent a novel but secondary forcing
mechanism worthy of further investigation.
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