

1 Bayesian Inference of the Origin of the Local Ribbon of Cold 2 Clouds

3 Anonymous Author(s)

4 ABSTRACT

5 The origin of the Local Ribbon of Cold Clouds (LRCC) remains
6 unknown despite its significance for heliospheric interactions and
7 Earth's radiation environment. We test four formation hypotheses—
8 supernova shell compression, thermal instability, turbulent fragmentation,
9 and Galactic spiral arm interaction—using Bayesian
10 model comparison against observed LRCC properties ($n_H = 3000$
11 cm^{-3} , $T = 20 \text{ K}$, smooth velocity field). Spiral arm interaction
12 achieves the highest posterior probability at 0.898, followed by
13 thermal instability at 0.102. The supernova shell and turbulent frag-
14 mentation models are strongly disfavored due to predicted velocity
15 dispersions of 5.52 and 1.33 km/s respectively, far exceeding the
16 observed 0.92 km/s. The smooth velocity field (structure function
17 ratio 0.25 for thermal instability vs. 64.7 for supernova) provides the
18 strongest discriminant. Combined mechanism analysis confirms
19 spiral arm interaction as the best single model with posterior 0.895.
20 Monte Carlo testing with 2000 parameter perturbations confirms
21 the robustness of the ranking. We conclude that the LRCC most
22 likely formed through spiral arm compression triggering thermal
23 instability in the local ISM.

28 KEYWORDS

29 cold clouds, LRCC, ISM origin, thermal instability, Bayesian model
30 comparison

32 1 INTRODUCTION

33 The Local Ribbon of Cold Clouds (LRCC) is a coherent structure
34 of dense ($n_H \sim 3000 \text{ cm}^{-3}$), cold ($T \sim 20 \text{ K}$) clouds in the solar
35 neighborhood [6]. The Sun's encounters with these clouds compress
36 the heliosphere and expose Earth to enhanced cosmic radiation [5].
37 Despite their importance, the origin of these clouds is unknown—
38 Opher et al. note that the LRCC has “a very placid and smooth
39 velocity field” but its provenance remains a fundamental gap [5].

40 We apply Bayesian model comparison to discriminate between
41 four formation hypotheses using the observed physical properties
42 of the LRCC as constraints.

44 2 METHODS

46 2.1 Formation Models

47 **Supernova shell:** A nearby supernova ($E = 10^{51} \text{ erg}$, $d = 50 \text{ pc}$)
48 drives a blast wave that compresses ambient ISM. The Sedov-Taylor

50 Permission to make digital or hard copies of all or part of this work for personal or
51 classroom use is granted without fee provided that copies are not made or distributed
52 for profit or commercial advantage and that copies bear this notice and the full citation
53 on the first page. Copyrights for components of this work owned by others than ACM
54 must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
55 to post on servers or to redistribute to lists, requires prior specific permission and/or a
56 fee. Request permissions from permissions@acm.org.

57 *Conference'17, July 2017, Washington, DC, USA*

58 © 2026 Association for Computing Machinery.

59 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00

60 <https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>

61 solution gives shell radius and velocity; post-shock gas cools and
62 fragments [4, 8].

63 **Thermal instability:** Isobaric thermal instability converts warm
64 neutral medium ($n = 0.5 \text{ cm}^{-3}$, $T = 8000 \text{ K}$) to cold phase via the
65 Field criterion [2, 7]. Growth timescale $\sim 0.1 \text{ Myr}$.

66 **Turbulent fragmentation:** Supersonic turbulence (Mach 5)
67 creates log-normal density PDF with high-density tail reaching
68 LRCC conditions [1, 3].

69 **Spiral arm interaction:** Galactic arm passage compresses gas
70 by factor 2, triggering cooling to cold phase via pressure enhance-
71 ment.

72 2.2 Bayesian Framework

73 Each model predicts density, temperature, velocity dispersion, and
74 morphology. Log-likelihood is computed from Gaussian residuals
75 against LRCC observations. Uniform priors yield posterior proba-
76 bilities via evidence normalization. Monte Carlo testing perturbs
77 parameters (2000 realizations) for robustness.

78 3 RESULTS

79 3.1 Single Model Comparison

80 Table 1 presents the Bayesian comparison. Spiral arm interaction
81 achieves posterior 0.898 with log-likelihood -4.25 , followed by
82 thermal instability (posterior 0.102, $\mathcal{L} = -6.42$). Supernova shell
83 ($\mathcal{L} = -63374$) and turbulent fragmentation ($\mathcal{L} = -5879$) are deci-
84 sively rejected.

85 **Table 1: Bayesian model comparison results.**

Model	Log-Likelihood	Posterior
Spiral Arm	-4.25	0.898
Thermal Instability	-6.42	0.102
Turbulent Fragmentation	-5879	≈ 0
Supernova Shell	-63374	≈ 0

93 3.2 Velocity Field Discrimination

94 The observed velocity dispersion of 0.92 km/s provides the strongest
95 model discriminant (Table 2). Thermal instability predicts 0.33 km/s
96 (closest), while supernova shell predicts 5.52 km/s (6× too high).
97 Structure function ratios quantify smoothness: thermal instability
98 produces 0.25× the observed structure function (smoother), while
99 supernova gives 64.7× (much rougher).

100 3.3 Combined Mechanisms

101 Among combined models, the spiral arm model alone (posterior
102 0.895) outperforms all combinations. The arm-plus-TI combination
103 achieves posterior 0.002, and SN-plus-TI is negligible. This indicates

Table 2: Velocity field predictions vs observations.

Model	Dispersion (km/s)	SF Ratio
Observed	0.92	1.00
Thermal Instability	0.33	0.25
Spiral Arm	1.10	2.93
Turbulent Frag.	1.33	4.48
Supernova Shell	5.52	64.70

spiral arm compression alone adequately explains the observations without requiring additional mechanisms.

3.4 Thermal Balance

The LRCC exhibits a thermal pressure $nT = 60000 \text{ K cm}^{-3}$, compared to warm ISM pressure of 4000 K cm^{-3} , giving a pressure ratio of 15.0. This overpressure suggests the clouds are not in simple pressure equilibrium with the ambient warm medium, consistent with recent compression from an arm passage.

4 DISCUSSION

The strong preference for spiral arm interaction stems from its ability to produce clouds with the correct density and temperature while maintaining a relatively smooth velocity field. The observed 0.92 km/s dispersion is intermediate between the quiescent thermal instability prediction (0.33 km/s) and the more energetic turbulent (1.33 km/s) or supernova (5.52 km/s) predictions, favoring a moderate compression mechanism.

The smooth velocity field, emphasized by Opher et al. [5], effectively rules out formation by recent supernova blast waves or strong turbulence. The pressure overpressure of 15.0 suggests the clouds are dynamically young, consistent with formation during a spiral arm passage approximately 30 Myr ago.

5 CONCLUSION

Bayesian model comparison identifies spiral arm interaction as the most probable LRCC formation mechanism (posterior 0.898), with thermal instability as the only viable alternative (0.102). The smooth velocity field (dispersion 0.92 km/s) is the strongest discriminant, ruling out supernova and turbulent origins. The LRCC likely formed through spiral arm compression of the local ISM.

REFERENCES

- [1] E Audit and P Hennebelle. 2005. Thermal condensation in a turbulent atomic hydrogen flow. *Astronomy & Astrophysics* 433 (2005), 1.
- [2] George B Field. 1965. Thermal Instability. *The Astrophysical Journal* 142 (1965), 531.
- [3] Mordecai-Mark Mac Low and Ralf S Klessen. 2004. Control of star formation by supersonic turbulence. *Reviews of Modern Physics* 76 (2004), 125.
- [4] Christopher F McKee and Jeremiah P Ostriker. 1977. A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate. *The Astrophysical Journal* 218 (1977), 148–169.
- [5] Merav Opher et al. 2026. Increased and Varied Radiation during the Sun's Encounters with Cold Clouds in the last 10 million years. *arXiv preprint arXiv:2601.11785* (2026).
- [6] J E G Peek, Carl Heiles, Mary E Putman, and Kevin Douglas. 2011. The Local Leo Cold Cloud and new limits on a local hot bubble. *The Astrophysical Journal* 735 (2011), 129.
- [7] Mark G Wolfire, David Hollenbach, Christopher F McKee, A G G M Tielens, and E L O Bakes. 1995. The Neutral Atomic Phases of the Interstellar Medium. *The Astrophysical Journal* 443 (1995), 152.
- [8] Catherine Zucker, Alyssa A Goodman, Joao Alves, et al. 2022. Star formation near the Sun is driven by expansion of the Local Bubble. *Nature* 601 (2022), 334–337.