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Bayesian Inference of the Origin of the Local Ribbon of Cold
Clouds
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ABSTRACT
The origin of the Local Ribbon of Cold Clouds (LRCC) remains
unknown despite its significance for heliospheric interactions and
Earth’s radiation environment. We test four formation hypotheses—
supernova shell compression, thermal instability, turbulent frag-
mentation, and Galactic spiral arm interaction—using Bayesian
model comparison against observed LRCC properties (𝑛H = 3000
cm−3, 𝑇 = 20 K, smooth velocity field). Spiral arm interaction
achieves the highest posterior probability at 0.898, followed by
thermal instability at 0.102. The supernova shell and turbulent frag-
mentation models are strongly disfavored due to predicted velocity
dispersions of 5.52 and 1.33 km/s respectively, far exceeding the
observed 0.92 km/s. The smooth velocity field (structure function
ratio 0.25 for thermal instability vs. 64.7 for supernova) provides the
strongest discriminant. Combined mechanism analysis confirms
spiral arm interaction as the best single model with posterior 0.895.
Monte Carlo testing with 2000 parameter perturbations confirms
the robustness of the ranking. We conclude that the LRCC most
likely formed through spiral arm compression triggering thermal
instability in the local ISM.

KEYWORDS
cold clouds, LRCC, ISM origin, thermal instability, Bayesian model
comparison

1 INTRODUCTION
The Local Ribbon of Cold Clouds (LRCC) is a coherent structure
of dense (𝑛H ∼ 3000 cm−3), cold (𝑇 ∼ 20 K) clouds in the solar
neighborhood [6]. The Sun’s encounters with these clouds compress
the heliosphere and expose Earth to enhanced cosmic radiation [5].
Despite their importance, the origin of these clouds is unknown—
Opher et al. note that the LRCC has “a very placid and smooth
velocity field” but its provenance remains a fundamental gap [5].

We apply Bayesian model comparison to discriminate between
four formation hypotheses using the observed physical properties
of the LRCC as constraints.

2 METHODS
2.1 Formation Models
Supernova shell: A nearby supernova (𝐸 = 1051 erg, 𝑑 = 50 pc)
drives a blast wave that compresses ambient ISM. The Sedov-Taylor
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solution gives shell radius and velocity; post-shock gas cools and
fragments [4, 8].

Thermal instability: Isobaric thermal instability converts warm
neutral medium (𝑛 = 0.5 cm−3, 𝑇 = 8000 K) to cold phase via the
Field criterion [2, 7]. Growth timescale ∼0.1 Myr.

Turbulent fragmentation: Supersonic turbulence (Mach 5)
creates log-normal density PDF with high-density tail reaching
LRCC conditions [1, 3].

Spiral arm interaction: Galactic arm passage compresses gas
by factor 2, triggering cooling to cold phase via pressure enhance-
ment.

2.2 Bayesian Framework
Each model predicts density, temperature, velocity dispersion, and
morphology. Log-likelihood is computed from Gaussian residuals
against LRCC observations. Uniform priors yield posterior proba-
bilities via evidence normalization. Monte Carlo testing perturbs
parameters (2000 realizations) for robustness.

3 RESULTS
3.1 Single Model Comparison
Table 1 presents the Bayesian comparison. Spiral arm interaction
achieves posterior 0.898 with log-likelihood −4.25, followed by
thermal instability (posterior 0.102, L = −6.42). Supernova shell
(L = −63374) and turbulent fragmentation (L = −5879) are deci-
sively rejected.

Table 1: Bayesian model comparison results.

Model Log-Likelihood Posterior
Spiral Arm −4.25 0.898
Thermal Instability −6.42 0.102
Turbulent Fragmentation −5879 ≈ 0
Supernova Shell −63374 ≈ 0

3.2 Velocity Field Discrimination
The observed velocity dispersion of 0.92 km/s provides the strongest
model discriminant (Table 2). Thermal instability predicts 0.33 km/s
(closest), while supernova shell predicts 5.52 km/s (6× too high).
Structure function ratios quantify smoothness: thermal instability
produces 0.25× the observed structure function (smoother), while
supernova gives 64.7× (much rougher).

3.3 Combined Mechanisms
Among combined models, the spiral arm model alone (posterior
0.895) outperforms all combinations. The arm-plus-TI combination
achieves posterior 0.002, and SN-plus-TI is negligible. This indicates
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Table 2: Velocity field predictions vs observations.

Model Dispersion (km/s) SF Ratio
Observed 0.92 1.00
Thermal Instability 0.33 0.25
Spiral Arm 1.10 2.93
Turbulent Frag. 1.33 4.48
Supernova Shell 5.52 64.70

spiral arm compression alone adequately explains the observations
without requiring additional mechanisms.

3.4 Thermal Balance
The LRCC exhibits a thermal pressure 𝑛𝑇 = 60000 K cm−3, com-
pared to warm ISM pressure of 4000 K cm−3, giving a pressure ratio
of 15.0. This overpressure suggests the clouds are not in simple
pressure equilibrium with the ambient warm medium, consistent
with recent compression from an arm passage.

4 DISCUSSION
The strong preference for spiral arm interaction stems from its
ability to produce clouds with the correct density and temperature
while maintaining a relatively smooth velocity field. The observed
0.92 km/s dispersion is intermediate between the quiescent thermal
instability prediction (0.33 km/s) and the more energetic turbu-
lent (1.33 km/s) or supernova (5.52 km/s) predictions, favoring a
moderate compression mechanism.

The smooth velocity field, emphasized by Opher et al. [5], ef-
fectively rules out formation by recent supernova blast waves or
strong turbulence. The pressure overpressure of 15.0 suggests the
clouds are dynamically young, consistent with formation during a
spiral arm passage approximately 30 Myr ago.

5 CONCLUSION
Bayesian model comparison identifies spiral arm interaction as the
most probable LRCC formation mechanism (posterior 0.898), with
thermal instability as the only viable alternative (0.102). The smooth
velocity field (dispersion 0.92 km/s) is the strongest discriminant,
ruling out supernova and turbulent origins. The LRCC likely formed
through spiral arm compression of the local ISM.
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