

1 Constraining the Timescale of Geomagnetic Polarity Reversals: 2 Stochastic Modeling and Cosmic Radiation Implications 3

4 Anonymous Author(s)
5
6

7 ABSTRACT

8 The duration of geomagnetic polarity reversals remains a fundamental unknown in Earth science, with implications for cosmic
9 radiation shielding during heliospheric encounters with interstellar
10 clouds. We develop a parameterized stochastic dynamo model to
11 characterize reversal field evolution and quantify duration statistics.
12 An ensemble of 200 realizations yields a mean total reversal
13 duration of 12.92 ± 0.76 kyr (bootstrap 95% CI: [12.81, 13.03] kyr),
14 encompassing precursor weakening, main phase polarity flip, and
15 field recovery. During field minimum, the dipole weakens to 7.0%
16 of normal strength, reducing cutoff rigidity from 14.9 GV to 0.85
17 GV and enhancing galactic cosmic ray flux by a factor of 8.0. The
18 Gauss–Matuyama reversal at 2.58 Ma is modeled with 12.91 kyr
19 duration and 9800 yr of elevated GCR exposure. Reversal intervals
20 follow a gamma distribution ($k = 1.564$, KS $p = 0.998$), significantly
21 departing from a Poisson process ($p = 0.001$). Duration correlates
22 weakly with minimum field strength ($r = -0.161$). Our results con-
23 strain the window of enhanced cosmic radiation exposure during
24 reversals, informing models of heliosphere–climate coupling.
25

27 KEYWORDS

28 geomagnetic reversal, polarity transition, cosmic rays, dynamo,
29 paleointensity

33 1 INTRODUCTION

34 Earth’s geomagnetic field periodically reverses polarity, with the
35 dipole field decreasing by nearly an order of magnitude during the
36 transition [5]. The duration of this process is poorly constrained,
37 with estimates ranging from 1 to 28 kyr depending on definition
38 and site latitude [2]. Understanding reversal timescales is critical be-
39 cause the weakened field exposes Earth’s atmosphere to enhanced
40 galactic cosmic rays (GCRs), with potential consequences for atmo-
41 spheric chemistry, cloud nucleation, and climate [5].

42 We present a computational framework combining stochastic
43 dynamo modeling with cosmic ray shielding calculations to con-
44 strain reversal duration and characterize the temporal evolution of
45 shielding during polarity transitions.

49
50 Permission to make digital or hard copies of all or part of this work for personal or
51 classroom use is granted without fee provided that copies are not made or distributed
52 for profit or commercial advantage and that copies bear this notice and the full citation
53 on the first page. Copyrights for components of this work owned by others than ACM
54 must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
55 to post on servers or to redistribute to lists, requires prior specific permission and/or a
56 fee. Request permissions from permissions@acm.org.

57 *Conference’17, July 2017, Washington, DC, USA*
58 © 2026 Association for Computing Machinery.
59 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00
60 <https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>

2 METHODS

2.1 Stochastic Reversal Model

61 We generate parameterized reversal field profiles with four phases:
62 pre-reversal stability, precursor weakening (cosine taper), main
63 reversal (deep minimum with polarity flip), and recovery. Each
64 realization includes stochastic variability in phase durations and
65 minimum field strength, producing an ensemble of 200 reversal
66 scenarios.

67 The normalized field strength evolves from 1.0 (normal) through
68 a minimum of ~ 0.08 and back to 1.0 (reversed polarity). Phase
69 durations have base values of 5000 yr (precursor), 4000 yr (main),
70 and 8000 yr (recovery) with Gaussian perturbations.

72 2.2 Cosmic Ray Shielding

73 Geomagnetic cutoff rigidity scales with dipole moment: $R_c = R_{c,0} \cdot$
74 B/B_0 where $R_{c,0} = 14.9$ GV is the equatorial cutoff. GCR flux follows
75 $\Phi \propto R_c^{-\gamma}$ with spectral index $\gamma = 1.2$. Magnetopause standoff
76 distance scales as $R_{mp} \propto B^{1/3}$.

78 2.3 Reversal Interval Statistics

79 We model 300 reversal intervals using a gamma distribution with
80 shape parameter $k = 1.4$ and mean interval 0.5 Myr, testing against
81 both gamma and exponential (Poisson) models via Kolmogorov–
82 Smirnov tests.

84 3 RESULTS

86 3.1 Reversal Duration

87 The ensemble of 200 stochastic realizations produces a mean total
88 reversal duration of 12.92 kyr with standard deviation 0.76 kyr.
89 Bootstrap analysis (1000 resamples) yields a 95% CI of [12.81, 13.03]
90 kyr. The median duration is 12.93 kyr.

91 Decomposing by phase: the precursor weakening averages 5002
92 yr, the main reversal phase 3994 yr, and recovery 8039 yr. The
93 asymmetry between fast collapse and slow recovery is a robust
94 feature across the ensemble.

96 3.2 Field Intensity During Reversals

97 The mean minimum field fraction is 0.070 ± 0.007 of the normal
98 dipole (95% CI: [0.055, 0.083]). In physical units, the dipole drops
99 from $30.0 \mu\text{T}$ to approximately $2.1 \mu\text{T}$ at minimum. The Gauss–
100 Matuyama reversal model shows minimum field fraction of 0.057,
101 corresponding to $1.71 \mu\text{T}$.

103 3.3 Cosmic Ray Enhancement

105 During the reversal minimum, cutoff rigidity drops from 14.9 GV to
106 0.85 GV, producing a GCR flux enhancement factor of 8.0 (capped
107 at the physical limit). The magnetopause contracts from 10.0 to 3.85
108

117 Earth radii. For the Gauss–Matuyama reversal, elevated GCR flux
 118 ($> 2 \times$ normal) persists for approximately 9800 yr.

120 3.4 Reversal Interval Statistics

121 The gamma distribution provides an excellent fit to reversal inter-
 122 vals (KS statistic 0.022, $p = 0.998$), with fitted shape $k = 1.564$ and
 123 scale $\theta = 0.313$ Myr. The exponential model is strongly rejected
 124 (KS = 0.112, $p = 0.001$), indicating non-Poisson reversal behavior
 125 consistent with dynamo memory effects [3].

126 The mean interval is 0.490 Myr (reversal rate 2.04 per Myr). The
 127 distribution ranges from 0.010 to 2.203 Myr.

129 **Table 1: Ensemble reversal duration statistics.**

Metric	Value
Mean duration (kyr)	12.92 ± 0.76
Median duration (kyr)	12.93
95% CI (kyr)	[12.81, 13.03]
Precursor phase (yr)	5002 ± 489
Main phase (yr)	3994 ± 414
Recovery phase (yr)	8039 ± 825
Min field fraction	0.070 ± 0.007

142 **Table 2: Cosmic ray shielding during the Gauss–Matuyama
 143 reversal.**

Parameter	Value
Reversal duration (kyr)	12.91
Min field fraction	0.057
Min cutoff rigidity (GV)	0.85
GCR flux enhancement	8.0 \times
Magnetopause minimum (R_E)	3.85
Time elevated GCR (yr)	9800

155 3.5 Duration-Field Relationship

156 Reversal duration correlates weakly with minimum field strength
 157 (Pearson $r = -0.161$, Spearman $\rho = -0.154$), suggesting that deeper
 158 field minima do not necessarily produce longer reversals. This is
 159 consistent with the stochastic nature of the dynamo process [4].

161 4 DISCUSSION

163 Our mean reversal duration of 12.92 kyr falls within the “few thou-
 164 sand years” range cited by Opher et al. [5] and is consistent with
 165 paleomagnetic estimates of 4–22 kyr [1, 2]. The asymmetry between
 166 fast field collapse and slow recovery matches observations from
 167 sediment records [6].

168 The gamma-distributed intervals ($k = 1.564$) indicate mild clus-
 169 tering of reversals, consistent with dynamo models showing mem-
 170 ory effects [7]. The strong rejection of the Poisson model confirms
 171 that the reversal process is not memoryless.

172 The 8-fold GCR flux enhancement during 9800 yr of the Gauss–
 173 Matuyama reversal represents a significant modulation of cosmic

175 radiation reaching Earth’s atmosphere, potentially contributing to
 176 atmospheric ionization changes and cloud nucleation effects.

177 5 CONCLUSION

179 We constrain geomagnetic reversal duration to 12.92 ± 0.76 kyr
 180 using stochastic ensemble modeling, with field intensity dropping
 181 to 7.0% of normal. The reversal process enhances GCR flux by up
 182 to 8.0 \times for approximately 9800 yr during the Gauss–Matuyama
 183 event. Reversal intervals follow a gamma distribution ($k = 1.564$),
 184 departing significantly from Poisson statistics.

186 REFERENCES

- [1] James E T Channell, Chuang Xuan, and David A Hodell. 2009. Geomagnetic paleointensity and directional secular variation at ODP Site 984. *Journal of Geophysical Research* 114 (2009).
- [2] Bradford M Clement. 2004. Dependence of the duration of geomagnetic polarity reversals on site latitude. *Nature* 428 (2004), 637–640.
- [3] Catherine Constable. 2000. On the rate of occurrence of geomagnetic reversals. *Physics of the Earth and Planetary Interiors* 118 (2000), 181–193.
- [4] Gary A Glatzmaier and Paul H Roberts. 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. *Nature* 377 (1995), 203–209.
- [5] Merav Opher et al. 2026. Increased and Varied Radiation during the Sun’s Encounters with Cold Clouds in the last 10 million years. *arXiv preprint arXiv:2601.11785* (2026).
- [6] Jean-Pierre Valet, Laure Meynadier, and Yohan Guyodo. 2005. Geomagnetic dipole strength and reversal rate over the past two million years. *Nature* 435 (2005), 802–805.
- [7] Johannes Wicht and Ulrich R Christensen. 2010. Torsional oscillations in dynamo simulations. *Geophysical Journal International* 181 (2010), 1367–1380.