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ABSTRACT

Approximately 25-50% of white dwarfs exhibit photospheric metal
pollution from accreting planetary debris, yet WD 1856+534—despite
hosting a close-in giant planet—shows no detectable pollution. We
develop a statistical framework combining population synthesis,
Bayesian hypothesis testing, and Monte Carlo power analysis to
determine whether this absence reflects dynamical shielding by
the planet or observational coincidence. Our simulations of 10,000
synthetic white dwarf systems show that under a planetary pro-
tection model, planet-hosting white dwarfs exhibit a pollution rate
of 10.2%, significantly below the 19.7% background rate (p < 1078,
binomial test). Bayesian model comparison yields decisive evidence
for the protection hypothesis (Bayes factor > 10°). Power analysis
indicates that a sample of ~50 white dwarf systems with close-in
giant planets would provide 80% power to detect protection at the
5% significance level, assuming 75% shielding efficiency. Our de-
bris trajectory simulations for the WD 1856+534b system (13.8 Mj,
0.02 AU) predict an 18.5% total shielding fraction. These results
provide a quantitative roadmap for resolving this open question
with forthcoming survey data.

1 INTRODUCTION

White dwarf stars frequently exhibit photospheric metal pollution,
with observational surveys indicating that 25-50% of hydrogen-
atmosphere (DA) white dwarfs show detectable metal absorption
lines [3, 6]. This pollution is attributed to the ongoing accretion of
disrupted planetesimals and asteroids that venture too close to the
white dwarf [1, 2].

WD 1856+534 presents a remarkable exception: despite hosting
one of the few confirmed giant planets orbiting a white dwarf—
WD 1856+534b, a ~13.8 My body in a ~1.4-day orbit at ~0.02 AU [4]—
no photospheric metal pollution has been detected. Zhang et al. [5]
used N-body simulations to demonstrate that such close-in planets
can dynamically eject or intercept debris, providing a “protective”
mechanism. However, they noted that current samples are too
limited to statistically distinguish protection from coincidence.

In this work, we develop and apply a comprehensive statistical
framework to address this open question. Our approach combines:
(1) population synthesis of white dwarf systems, (2) frequentist and
Bayesian hypothesis tests, (3) Monte Carlo power analysis to deter-
mine required sample sizes, and (4) debris trajectory simulations
parameterized by planet properties.

2 METHODS

2.1 Population Synthesis

We generate a synthetic population of N = 10,000 white dwarfs, of
which 500 host close-in giant planets. Each system is assigned:
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o Stellar properties: effective temperature T ~ N (10,000, 3000) K,

cooling age from Exp(1.5) Gyr, atmosphere type (80% DA,
20% DB).
o Planet properties: mass from a power-law distribution
[1, 13] My, orbital separation log-uniform in [0.01,0.1] AU.
o Debris activity: 30% of systems have active debris delivery
with accretion rates M ~ N (10%,5 x 107) g/s.

2.2 Protection Model
The planetary shielding efficiency 7 is modeled as:

. M, 1
n(Mp, a, M) = tanh(—p) exp(— 2 ) -
3 M 0.05AU/ 1+ (M/5 x 108)2
1)

Under the protection hypothesis, intrinsically polluted planet-hosting
systems have their pollution blocked with probability . Under the
null hypothesis, planets have no effect on pollution.

2.3 Statistical Tests

We employ three complementary approaches:

(1) Binomial test: One-sided test for reduced pollution rate
among planet-hosting WDs relative to the background rate.

(2) Fisher’s exact test: Contingency table analysis comparing
pollution incidence between planet and non-planet subsam-
ples.

(3) Bayesian model comparison: We compute the Bayes
factor Byg by integrating the binomial likelihood over a
uniform prior on the protection-reduced rate.

2.4 Power Analysis

Monte Carlo simulations (5,000 iterations) estimate the statistical
power to detect protection at & = 0.05 and @ = 0.01 for sample
sizes ranging from 5 to 200 systems, across protection efficiencies
of 50%, 75%, and 95%.

2.5 Debris Trajectory Simulations

We simulate 5,000 test particles on highly eccentric orbits (e > 0.8)
interacting with a planet of specified mass and separation. Parti-
cles are classified as ejected (gravitational scattering), intercepted
(captured by planet), or accreted (reaching the white dwarf).

3 RESULTS
3.1 Population-Level Analysis

Under the protection model, planet-hosting white dwarfs exhibit a
detected pollution rate of 10.2%, compared to 19.7% for the general
population (Table 1). The null model predicts 18.4% for planet-
hosting systems.
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Table 1: Pollution rates under protection and null models.

Subsample Protection Null

Planet-hosting 0.102 0.184
No planet 0.197 0.200
Overall 0.192 0.199

3.2 Statistical Tests

The binomial test rejects the null hypothesis with p < 1078 (Table 2).
Fisher’s exact test yields an odds ratio of 0.464 (p < 10~8). Bayesian
model comparison provides decisive evidence for the protection
hypothesis with log;, B1o = 6.40.

Table 2: Statistical test results (Npjanet = 500).

Test Statistic p-value
Binomial Effect size: 0.095 7.4 x 107°
Fisher exact OR = 0.464 1.5x 1078

Bayes factor  log;y Big = 6.40 —

3.3 Power Analysis

Figure 1 shows the statistical power as a function of sample size.
At 75% protection efficiency, approximately 50 systems are needed
for 80% power at a = 0.05. At 50% efficiency, the required sample
exceeds 100 systems.
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Figure 1: Statistical power versus sample size for three pro-
tection efficiencies.

3.4 WD 1856+534b Debris Simulations

For the WD 1856+534b system (13.8 Mj, 0.02 AU), our trajectory
simulations predict a total shielding fraction of 18.5% (15.2% ejected,
3.1% intercepted) from 5,000 test particles. The computed protection
efficiency is n = 0.644.

Anon.

(a) Shielding vs. Planet Mass (b) Debris Outcomes for WD 1856+534b
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Figure 2: (a) Shielding fraction versus planet mass. (b) Debris
trajectory outcomes for WD 1856+534b.

3.5 Future Survey Predictions

With 50 analogous systems, the median Bayes factor exceeds 10
(strong evidence). With 200 systems, the probability of achieving
decisive evidence (B1p > 100) exceeds 95% (Figure 3).

(a) Bayesian Evidence vs. Sample Size (b) Detection Probability vs. Sample Size
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Figure 3: (a) Median Bayes factor versus sample size. (b) Fre-
quentist power and probability of decisive Bayesian evidence.

4 CONCLUSION

We present a statistical framework for resolving whether the ab-
sence of pollution in WD 1856+534 reflects planetary protection or
observational coincidence. Our population synthesis demonstrates
that the protection signal is statistically detectable with current
methods, provided sufficient sample sizes. With 75% protection
efficiency and ~50 planet-hosting WD systems, both frequentist
and Bayesian approaches achieve robust discrimination. Upcom-
ing surveys from Gaia, LSST, and JWST follow-up programs are
expected to assemble such samples within the next decade, making
this framework directly applicable to forthcoming observational
data.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Our model makes simplifying assumptions about debris orbit distri-
butions and detection efficiencies. The protection efficiency param-
eterization, while inspired by N-body results, requires calibration
against detailed dynamical simulations. Selection effects in planet
detection surveys may bias comparisons between planet-hosting
and field white dwarfs. Future work should incorporate realistic sur-
vey selection functions. This work involves computational modeling
of astrophysical phenomena and raises no direct ethical concerns.
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