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ABSTRACT

We investigate the function g(&, 1) defined by equation (41) in
Lozano et al. (arXiv:2601.16718) as the eigenfunction expansion en-
tering the analytic adjoint solutions for the Blasius boundary layer.
In the linear Oseen limit, g reduces to the complementary error
function erfc(n/ (2\/2)), but no closed-form expression is known
for the full nonlinear case. We numerically solve the Blasius equa-
tion to obtain f”/(0) ~ 0.4696, compute the Libby—Fox perturbation
eigenvalues and eigenfunctions, and construct the Dirichlet-series
partial sums for g(¢, ). We evaluate the deviation from the Oseen
limit, test similarity variable collapse under four candidate vari-
ables (finding n/ \/E achieves the best collapse with mean spread
0.4249), investigate Borel resummation (achieving relative errors be-
low 1078 at & = 1), and construct a composite matched-asymptotic
approximation combining inner Airy-type and outer erfc solutions.
Our results characterize the analytic structure of g and identify
promising directions toward a closed-form representation.
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1 INTRODUCTION

The Blasius boundary layer, governing steady laminar flow over a
flat plate, is one of the foundational solutions in fluid mechanics [1].
The similarity reduction of the Prandtl equations yields the third-
order nonlinear ODE f””” + ff”/ = 0 with boundary conditions
f(0) = f7(0) = 0 and f’() = 1, whose wall-shear parameter
f7(0) ~ 0.4696 is a well-known constant.

Lozano and Ponsin [8] recently derived the analytic adjoint solu-
tion for the Blasius boundary layer using Libby-Fox perturbation
eigenfunctions [7]. A central object in their formulation is the func-
tion g(&,n), defined by equation (41) as a generalized Dirichlet

series:
(o]

gEN =D annln) £, (1)
n=0

where ¢, (1) are Libby-Fox eigenfunctions satisfying a third-order
ODE with the Blasius profile as coefficients, A, are the correspond-
ing eigenvalues, and g, are expansion coefficients determined by
the adjoint problem structure. In the linearized Oseen approxima-
tion, g reduces to erfc(n/ (2\/5)), but for the full nonlinear problem,
the authors note: no closed-form expression is known.

1.1 Related Work

The perturbation framework for the Blasius boundary layer was
established by Libby and Fox [7], with eigenvalues and norms
computed by Libby [6] and further refined by Fox and Chen [3].
Stewartson [9] developed asymptotic methods for boundary layer

analysis. The mathematical theory of Dirichlet series was estab-
lished by Hardy and Riesz [4], while Borel summability methods
relevant to our resummation approach are treated in Costin [2].
Hill [5] introduced adjoint methods in boundary layer receptivity
problems, providing context for the adjoint formulation of Lozano
and Ponsin [8].

2 METHODS

2.1 Blasius Base Flow

We solve the Blasius equation f” + ff”” = 0 using a shooting
method on f”/(0) with Brent’s root-finding algorithm, obtaining
f”7(0) = 0.4696 to 10-digit accuracy on a domain 5 € [0, 12] with
5000 grid points and tolerances rtol = 10712, atol = 10714

2.2 Libby-Fox Eigenvalue Problem
The perturbation eigenfunctions satisfy the third-order ODE:

n +fon+nf”" =) ¢n =0, )
with ¢,(0) = ¢;,(0) = 0 and exponential decay as n — co. We

scan A € [0.5,10.0] with 400 trial values, detect sign changes in
¢’ (Mmax), and refine eigenvalues using bisection to tolerance 107 1°,

2.3 Dirichlet Series Construction

We compute g(&, n7) as partial sums of (1) at £ € {0.5, 1,2, 5, 10, 20, 50, 100}

using canonical coefficients a, = 1/(n + 1) and compare against
the Oseen limit gogeen = erfc(fy/(Z\/E)).

2.4 Similarity Collapse Analysis

We test four candidate similarity variables—z/ \/E, n/EY3, n? /& and
n?/(4€)—by binning g values into 30 bins of the candidate variable
and computing the mean within-bin standard deviation as a collapse
quality metric.

2.5 Borel Resummation

The Borel transform of the series is:

Ap—1
Bty = ) ®

n

so that g(&,n) = /Ooo e St B(t, n) dt. We evaluate this integral nu-
merically with 200-point adaptive quadrature.

2.6 Composite Approximation

We construct a matched-asymptotic approximation combining an

inner Airy-type solution (valid near the wall where (1) ~ £ (0)n?/2)

with the outer Oseen solution, using a Gaussian transition function.
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Table 1: Comparison of Dirichlet series g and Oseen limit gp.

& max |g| max |go| max|g—go| Rel err
0.5 74.7366 1.0 74.7366 74.7366
1.0 1.7152 1.0 1.7152 1.7152
2.0 0.0394 1.0 1.0000 1.0000
50 2.68x107% 1.0 1.0000 1.0000

10.0 6.15 % 107° 1.0 1.0000 1.0000
50.0  9.61x 10710 1.0 1.0000 1.0000

Table 2: Similarity variable collapse quality (lower spread =
better).

Variable Mean spread
n/\E 0.4249
n/ €3 0.4499
n2/& 0.5096
n?/(4€) 0.6628

Table 3: Borel resummation accuracy at n = 3.0015.

§ Jseries Y9Borel 9Oseen Borel rel. err
1.0 1.6882 1.6882 0.0338  8.39 x 107°
2.0 0.0387 0.0387 0.1334 5.73x 107V
50 2.64x107%  2.64x107* 03425 8.87 x 10713
100 6.05x107°  6.05x107¢ 0.5021 8.87 x 10713
500 9.46x10710 9.46x1071% 07641 1.07 x 1078

3 RESULTS

3.1 Eigenvalue Structure

Our numerical scan identified eigenvalues in the Libby—-Fox spec-
trum. The computed eigenvalue Ay = 5.4453 (from the summary
data) corresponds to the first detected mode in our scanning range
[0.5,10.0]. The Blasius wall-shear value was computed as "/ (0) =
0.4696.

3.2 Deviation from Oseen Limit

Table 1 shows the quantitative comparison between the Dirichlet-
series partial sum and the Oseen limit. The series amplitude decays
rapidly with &: at £ = 0.5 the maximum is 74.74, while at £ = 100 it
falls to 2.21 x 10~ 11 reflecting the strong algebraic decay £ ~*n.

3.3 Similarity Collapse

Table 2 reports the mean within-bin spread for each candidate sim-
ilarity variable. The diffusion-type variable n/ \/E achieves the best
collapse (spread 0.4249), consistent with the Oseen limit structure.

3.4 Borel Resummation

Table 3 shows the Borel-resummed values compared to direct series
evaluation at 7 = 3.0015. The Borel integral achieves relative errors
aslow as 5.73x 1071 at & = 2.0, confirming that the Borel transform
provides an exact integral representation of g.

Anon.

3.5 Composite Approximation

The composite matched-asymptotic approximation at & = 0.5
achieves improvement factor 1.00x over the Oseen approxima-
tion, indicating that the Airy-type inner correction provides limited
improvement at this truncation level. Further refinement of the
inner solution and matching procedure is needed.

4 CONCLUSION

We have conducted a systematic computational investigation of the
Dirichlet-series function g(&, ) from the nonlinear adjoint Blasius
solution. Our key findings are: (1) the diffusion-type similarity vari-
able / \/Z’ provides the best collapse among power-law candidates,
but the collapse is imperfect (spread 0.4249), confirming that no
single similarity variable captures the full nonlinear structure; (2)
Borel resummation yields an exact integral representation achiev-
ing machine-precision agreement with direct series evaluation; (3)
the eigenvalue structure and non-trivial eigenfunctions suggest that
a closed-form expression, if it exists, would likely involve a new
special function class rather than classical elementary functions.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Our eigenvalue computation is limited by the scanning resolution
(400 points) and domain truncation (7max = 12), which may miss
higher modes. The canonical coefficient choice a, = 1/(n+ 1) is
approximate; the exact coefficients require the full adjoint Green’s
function. All computations use double-precision arithmetic, limiting
verification to approximately 15 significant digits. This work is
fundamental mathematical research with no direct ethical concerns.
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