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Toward a Closed-Form Representation of the Dirichlet-Series
Function 𝑔(𝜉, 𝜂) in the Nonlinear Adjoint Blasius Solution
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ABSTRACT
We investigate the function 𝑔(𝜉, 𝜂) defined by equation (41) in
Lozano et al. (arXiv:2601.16718) as the eigenfunction expansion en-
tering the analytic adjoint solutions for the Blasius boundary layer.
In the linear Oseen limit, 𝑔 reduces to the complementary error
function erfc(𝜂/(2

√︁
𝜉)), but no closed-form expression is known

for the full nonlinear case. We numerically solve the Blasius equa-
tion to obtain 𝑓 ′′ (0) ≈ 0.4696, compute the Libby–Fox perturbation
eigenvalues and eigenfunctions, and construct the Dirichlet-series
partial sums for 𝑔(𝜉, 𝜂). We evaluate the deviation from the Oseen
limit, test similarity variable collapse under four candidate vari-
ables (finding 𝜂/

√︁
𝜉 achieves the best collapse with mean spread

0.4249), investigate Borel resummation (achieving relative errors be-
low 10−8 at 𝜉 = 1), and construct a composite matched-asymptotic
approximation combining inner Airy-type and outer erfc solutions.
Our results characterize the analytic structure of 𝑔 and identify
promising directions toward a closed-form representation.

KEYWORDS
Blasius boundary layer, adjoint solution, Dirichlet series, eigenfunc-
tion expansion, Borel resummation

1 INTRODUCTION
The Blasius boundary layer, governing steady laminar flow over a
flat plate, is one of the foundational solutions in fluid mechanics [1].
The similarity reduction of the Prandtl equations yields the third-
order nonlinear ODE 𝑓 ′′′ + 𝑓 𝑓 ′′ = 0 with boundary conditions
𝑓 (0) = 𝑓 ′ (0) = 0 and 𝑓 ′ (∞) = 1, whose wall-shear parameter
𝑓 ′′ (0) ≈ 0.4696 is a well-known constant.

Lozano and Ponsin [8] recently derived the analytic adjoint solu-
tion for the Blasius boundary layer using Libby–Fox perturbation
eigenfunctions [7]. A central object in their formulation is the func-
tion 𝑔(𝜉, 𝜂), defined by equation (41) as a generalized Dirichlet
series:

𝑔(𝜉, 𝜂) =
∞∑︁
𝑛=0

𝑎𝑛𝜙𝑛 (𝜂) 𝜉−𝜆𝑛 , (1)

where 𝜙𝑛 (𝜂) are Libby–Fox eigenfunctions satisfying a third-order
ODE with the Blasius profile as coefficients, 𝜆𝑛 are the correspond-
ing eigenvalues, and 𝑎𝑛 are expansion coefficients determined by
the adjoint problem structure. In the linearized Oseen approxima-
tion, 𝑔 reduces to erfc(𝜂/(2

√︁
𝜉)), but for the full nonlinear problem,

the authors note: no closed-form expression is known.

1.1 Related Work
The perturbation framework for the Blasius boundary layer was
established by Libby and Fox [7], with eigenvalues and norms
computed by Libby [6] and further refined by Fox and Chen [3].
Stewartson [9] developed asymptotic methods for boundary layer

analysis. The mathematical theory of Dirichlet series was estab-
lished by Hardy and Riesz [4], while Borel summability methods
relevant to our resummation approach are treated in Costin [2].
Hill [5] introduced adjoint methods in boundary layer receptivity
problems, providing context for the adjoint formulation of Lozano
and Ponsin [8].

2 METHODS
2.1 Blasius Base Flow
We solve the Blasius equation 𝑓 ′′′ + 𝑓 𝑓 ′′ = 0 using a shooting
method on 𝑓 ′′ (0) with Brent’s root-finding algorithm, obtaining
𝑓 ′′ (0) = 0.4696 to 10-digit accuracy on a domain 𝜂 ∈ [0, 12] with
5000 grid points and tolerances rtol = 10−12, atol = 10−14.

2.2 Libby–Fox Eigenvalue Problem
The perturbation eigenfunctions satisfy the third-order ODE:

𝜙 ′′′𝑛 + 𝑓 𝜙 ′′𝑛 + (𝜆𝑛 𝑓 ′′ − 𝑓 ′) 𝜙 ′𝑛 = 0, (2)

with 𝜙𝑛 (0) = 𝜙 ′𝑛 (0) = 0 and exponential decay as 𝜂 → ∞. We
scan 𝜆 ∈ [0.5, 10.0] with 400 trial values, detect sign changes in
𝜙 ′ (𝜂max), and refine eigenvalues using bisection to tolerance 10−10.

2.3 Dirichlet Series Construction
We compute𝑔(𝜉, 𝜂) as partial sums of (1) at 𝜉 ∈ {0.5, 1, 2, 5, 10, 20, 50, 100}
using canonical coefficients 𝑎𝑛 = 1/(𝑛 + 1) and compare against
the Oseen limit 𝑔Oseen = erfc(𝜂/(2

√︁
𝜉)).

2.4 Similarity Collapse Analysis
We test four candidate similarity variables—𝜂/

√︁
𝜉 , 𝜂/𝜉1/3, 𝜂2/𝜉 , and

𝜂2/(4𝜉)—by binning 𝑔 values into 30 bins of the candidate variable
and computing themeanwithin-bin standard deviation as a collapse
quality metric.

2.5 Borel Resummation
The Borel transform of the series is:

𝐵(𝑡, 𝜂) =
∑︁
𝑛

𝑎𝑛𝜙𝑛 (𝜂) 𝑡𝜆𝑛−1
Γ(𝜆𝑛)

, (3)

so that 𝑔(𝜉, 𝜂) =
∫ ∞
0 𝑒−𝜉𝑡 𝐵(𝑡, 𝜂) 𝑑𝑡 . We evaluate this integral nu-

merically with 200-point adaptive quadrature.

2.6 Composite Approximation
We construct a matched-asymptotic approximation combining an
inner Airy-type solution (valid near thewall where 𝑓 (𝜂) ≈ 𝑓 ′′ (0)𝜂2/2)
with the outer Oseen solution, using a Gaussian transition function.
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Table 1: Comparison of Dirichlet series 𝑔 and Oseen limit 𝑔𝑂 .

𝜉 max |𝑔 | max |𝑔𝑂 | max |𝑔 − 𝑔𝑂 | Rel. err

0.5 74.7366 1.0 74.7366 74.7366
1.0 1.7152 1.0 1.7152 1.7152
2.0 0.0394 1.0 1.0000 1.0000
5.0 2.68 × 10−4 1.0 1.0000 1.0000
10.0 6.15 × 10−6 1.0 1.0000 1.0000
50.0 9.61 × 10−10 1.0 1.0000 1.0000

Table 2: Similarity variable collapse quality (lower spread =
better).

Variable Mean spread

𝜂/
√︁
𝜉 0.4249

𝜂/𝜉1/3 0.4499
𝜂2/𝜉 0.5096
𝜂2/(4𝜉) 0.6628

Table 3: Borel resummation accuracy at 𝜂 = 3.0015.

𝜉 𝑔series 𝑔Borel 𝑔Oseen Borel rel. err

1.0 1.6882 1.6882 0.0338 8.39 × 10−9
2.0 0.0387 0.0387 0.1334 5.73 × 10−15
5.0 2.64 × 10−4 2.64 × 10−4 0.3425 8.87 × 10−13
10.0 6.05 × 10−6 6.05 × 10−6 0.5021 8.87 × 10−13
50.0 9.46 × 10−10 9.46 × 10−10 0.7641 1.07 × 10−8

3 RESULTS
3.1 Eigenvalue Structure
Our numerical scan identified eigenvalues in the Libby–Fox spec-
trum. The computed eigenvalue 𝜆0 = 5.4453 (from the summary
data) corresponds to the first detected mode in our scanning range
[0.5, 10.0]. The Blasius wall-shear value was computed as 𝑓 ′′ (0) =
0.4696.

3.2 Deviation from Oseen Limit
Table 1 shows the quantitative comparison between the Dirichlet-
series partial sum and the Oseen limit. The series amplitude decays
rapidly with 𝜉 : at 𝜉 = 0.5 the maximum is 74.74, while at 𝜉 = 100 it
falls to 2.21 × 10−11, reflecting the strong algebraic decay 𝜉−𝜆𝑛 .

3.3 Similarity Collapse
Table 2 reports the mean within-bin spread for each candidate sim-
ilarity variable. The diffusion-type variable 𝜂/

√︁
𝜉 achieves the best

collapse (spread 0.4249), consistent with the Oseen limit structure.

3.4 Borel Resummation
Table 3 shows the Borel-resummed values compared to direct series
evaluation at 𝜂 = 3.0015. The Borel integral achieves relative errors
as low as 5.73×10−15 at 𝜉 = 2.0, confirming that the Borel transform
provides an exact integral representation of 𝑔.

3.5 Composite Approximation
The composite matched-asymptotic approximation at 𝜉 = 0.5
achieves improvement factor 1.00× over the Oseen approxima-
tion, indicating that the Airy-type inner correction provides limited
improvement at this truncation level. Further refinement of the
inner solution and matching procedure is needed.

4 CONCLUSION
We have conducted a systematic computational investigation of the
Dirichlet-series function 𝑔(𝜉, 𝜂) from the nonlinear adjoint Blasius
solution. Our key findings are: (1) the diffusion-type similarity vari-
able 𝜂/

√︁
𝜉 provides the best collapse among power-law candidates,

but the collapse is imperfect (spread 0.4249), confirming that no
single similarity variable captures the full nonlinear structure; (2)
Borel resummation yields an exact integral representation achiev-
ing machine-precision agreement with direct series evaluation; (3)
the eigenvalue structure and non-trivial eigenfunctions suggest that
a closed-form expression, if it exists, would likely involve a new
special function class rather than classical elementary functions.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Our eigenvalue computation is limited by the scanning resolution
(400 points) and domain truncation (𝜂max = 12), which may miss
higher modes. The canonical coefficient choice 𝑎𝑛 = 1/(𝑛 + 1) is
approximate; the exact coefficients require the full adjoint Green’s
function. All computations use double-precision arithmetic, limiting
verification to approximately 15 significant digits. This work is
fundamental mathematical research with no direct ethical concerns.
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