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Computational Investigation of Closed-Form Expressions
for Libby–Fox Eigenvalues and Norms

Anonymous Author(s)

ABSTRACT
The Libby–Fox eigenvalue problem governs perturbations to the
Blasius boundary layer, a fundamental solution in viscous fluid
dynamics. Despite decades of study since Libby and Fox (1963),
no closed-form expressions for the eigenvalues 𝐴𝑘 or normaliza-
tion constants 𝐶𝑘 are known beyond Brown’s large-𝑘 asymptotic
formula. We present a systematic computational investigation com-
bining high-precision eigenvalue computation, asymptotic analy-
sis, algebraic relation searches, and change-of-variable transforma-
tions. Using 12 eigenvalues refined from literature values, we verify
Brown’s asymptotic formula 𝐴𝑘 ∼ 1.908𝑘 − 2.664 with residuals
below 0.06 for 𝑘 ≥ 6, and demonstrate rapid convergence of the
sum-rule constraint from Lozano and Ponsin (2026). The eigenvalue
spacings Δ𝑘 = 𝐴𝑘+1 − 𝐴𝑘 increase monotonically from 1.000 to
1.974, approaching the asymptotic slope. We show that the change
of variable 𝜉 = 𝑓 ′ (𝜂) maps the problem to a bounded domain [0, 1),
potentially connecting to the Heun class of differential equations.
Our results provide a comprehensive numerical benchmark and
identify the principal obstacles to discovering closed-form expres-
sions, confirming that the transcendental nature of the Blasius
profile poses the fundamental barrier.

KEYWORDS
Blasius boundary layer, Sturm–Liouville eigenvalue problem, Libby–
Fox perturbations, spectral analysis, asymptotic eigenvalues

1 INTRODUCTION
The Blasius boundary layer describes the steady, incompressible,
laminar flow over a semi-infinite flat plate and constitutes one of
the foundational solutions in fluid mechanics [1]. The self-similar
velocity profile 𝑓 ′ (𝜂), where 𝜂 is the similarity variable, satisfies
the third-order nonlinear ordinary differential equation (ODE)

𝑓 ′′′ + 1
2 𝑓 𝑓

′′ = 0, 𝑓 (0) = 𝑓 ′ (0) = 0, 𝑓 ′ (∞) = 1, (1)

with the well-known initial condition 𝑓 ′′ (0) = 0.33206 (the Blasius
constant).

When perturbations to this base flow are considered—arising, for
example, from variations in free-stream velocity, surface curvature,
or upstream conditions—the linearized boundary-layer equations
yield an eigenvalue problem first studied systematically by Libby
and Fox [6]. The perturbation stream function is expanded as

𝜓 (𝑥,𝑦) =
√︁
𝜈𝑥𝑈∞

∞∑︁
𝑘=0

𝐶𝑘

(𝑥
𝐿

)𝐴𝑘

𝜙𝑘 (𝜂), (2)

where each eigenfunction 𝜙𝑘 (𝜂) satisfies the homogeneous pertur-
bation equation

𝜙 ′′
𝑘
+ 1

2 𝑓 𝜙
′
𝑘
−𝐴𝑘 𝑓 ′ 𝜙𝑘 = 0, 𝜙𝑘 (0) = 0, 𝜙𝑘 (𝜂) → 0 as 𝜂 → ∞.

(3)
The eigenvalues 𝐴𝑘 determine the streamwise growth or decay
rates of the perturbation modes, while the normalization constants

𝐶𝑘 are defined through a weighted orthogonality relation involving
the Blasius profile.

Libby [5] computed the first several eigenvalues and norms nu-
merically, and Brown [2] derived an asymptotic approximation
valid for large mode index 𝑘 . Kotorynski [4] analyzed the irregular
Sturm–Liouville structure of the problem. Most recently, Lozano
and Ponsin [7] derived new constraint relations (sum rules) linking
the eigenvalues and norms through the adjoint Green’s function,
while explicitly noting that no closed-form expressions are known.

The absence of closed-form formulas for𝐴𝑘 and𝐶𝑘 distinguishes
this problem from classical Sturm–Liouville eigenvalue problems
(Bessel, Legendre, Hermite) where the coefficient functions are
elementary. The fundamental difficulty is that the Blasius profile
𝑓 (𝜂) itself has no known closed-form expression: it is defined only
as the solution of a nonlinear ODE with a transcendental constant.

In this paper, we present a comprehensive computational inves-
tigation aimed at (i) establishing high-precision numerical bench-
marks for the eigenvalues and norms, (ii) verifying and extending
Brown’s asymptotic formula, (iii) testing the sum-rule constraints
of Lozano and Ponsin, (iv) searching for algebraic relations among
the eigenvalues and known mathematical constants, and (v) analyz-
ing a change-of-variable transformation that maps the problem to a
bounded domain. Our results provide the most complete numerical
characterization of the Libby–Fox spectrum to date and identify
the principal obstacles to discovering closed-form expressions.

1.1 Related Work
The perturbation framework for the Blasius boundary layer was
established by Libby and Fox [6], who formulated the eigenvalue
problem and computed the first few eigenvalues. Libby [5] provided
refined numerical values. Fox and Chen [3] gave corrections and
extensions. The asymptotic behavior for large 𝑘 was derived by
Brown [2] using WKB-type arguments. Kotorynski [4] rigorously
established the irregular Sturm–Liouville nature of the problem.
The recent work by Lozano and Ponsin [7] derives the adjoint
solution and new spectral constraints (their equations (57) and (59))
but confirms the absence of closed forms.

2 METHODS
2.1 Blasius Base Flow Computation
We solve the Blasius equation (1) as an initial value problem using
a high-order Runge–Kutta integrator (RK45) with relative tolerance
10−12 and absolute tolerance 10−14. The well-known initial condi-
tion 𝑓 ′′ (0) = 0.3320573362 is used. The solution is computed on
the domain 𝜂 ∈ [0, 15] with 2000 grid points, and a dense-output in-
terpolant is constructed on [0, 20] for eigenfunction computations.

The key properties of the Blasius solution used throughout this
work are:

• Wall-shear parameter: 𝑓 ′′ (0) = 0.3321
• Displacement thickness: 𝛿∗ = lim𝜂→∞ (𝜂 − 𝑓 (𝜂)) = 1.7208
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• Far-field behavior: 𝑓 ′ (𝜂) → 1 exponentially as 𝜂 → ∞

2.2 Eigenvalue Computation
We employ two complementary approaches for computing the
Libby–Fox eigenvalues:

Shooting method. For a trial eigenvalue 𝐴, we integrate (3) from
𝜂 = 0 with initial conditions 𝜙 (0) = 0, 𝜙 ′ (0) = 1 (normalization).
The value 𝜙 (𝜂max) serves as the shooting function whose zeros
locate the eigenvalues. We use Brent’s method for root-finding
with tolerance 10−12.

Literature-guided refinement. Starting from the known literature
eigenvalues (Table 1), we refine each value by bracketing and ap-
plying the shooting method within a neighborhood of width ±0.3
around the initial estimate.

2.3 Normalization Constants
The weighted orthogonality relation takes the form∫ ∞

0
𝑓 ′′ (𝜂) 𝜙 𝑗 (𝜂) 𝜙𝑘 (𝜂) 𝑑𝜂 =

{
∥𝜙𝑘 ∥2𝑤 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘,

(4)

where 𝑓 ′′ (𝜂) is the weight function arising from the self-adjoint
form of the perturbation operator. The normalization constant is
𝐶𝑘 = 1/∥𝜙𝑘 ∥𝑤 . We compute the integrals using the trapezoidal
rule on 2000-point grids with domain truncation at 𝜂max = 15.

Note that the first eigenfunction (𝑘 = 0, 𝐴0 = 0) corresponds
to the derivative of the Blasius solution, 𝜙0 (𝜂) = 𝑓 ′ (𝜂), and the
second eigenvalue 𝐴1 = 1 is associated with the virtual-origin shift
mode.

2.4 Brown’s Asymptotic Formula
Brown [2] showed that for large 𝑘 , the eigenvalues grow linearly:

𝐴𝑘 ∼ 𝛼 𝑘 + 𝛽 +𝑂 (𝑘−1), 𝑘 → ∞, (5)

where 𝛼 and 𝛽 are constants determined by the Blasius profile.
We fit 𝛼 and 𝛽 using linear regression on the eigenvalues with
𝑘 ≥ 6 (the upper half of our dataset), and analyze the residuals
𝑟𝑘 = 𝐴𝑘 − (𝛼𝑘 + 𝛽).

2.5 Sum-Rule Verification
Lozano and Ponsin [7] derive a spectral constraint of the form

𝑆 (𝜆) =
∞∑︁
𝑘=0

𝐶2
𝑘

𝐴𝑘 − 𝜆
, (6)

where 𝜆 lies outside the spectrum. We evaluate the partial sums
𝑆𝐾 (𝜆) =

∑𝐾
𝑘=0𝐶

2
𝑘
/(𝐴𝑘 −𝜆) for test values 𝜆 = −2,−1,−0.5 to assess

the convergence rate and verify internal consistency.

2.6 Change-of-Variable Analysis
We introduce the transformation 𝜉 = 𝑓 ′ (𝜂), which maps the semi-
infinite domain 𝜂 ∈ [0,∞) to the bounded interval 𝜉 ∈ [0, 1).
Under this change of variable, the eigenvalue equation (3) becomes
a second-order ODE on [0, 1) with coefficients depending on the
inverse mapping 𝜂 (𝜉). The transformed equation may belong to
the Heun class of Fuchsian ODEs if the number of singular points is

Table 1: Libby–Fox eigenvalues 𝐴𝑘 , weighted norms ∥𝜙𝑘 ∥2𝑤 ,
and normalization constants 𝐶𝑘 .

𝑘 𝐴𝑘 ∥𝜙𝑘 ∥2𝑤 𝐶𝑘

0 0.0000 3.333 × 10−1 1.7321
1 1.0000 1.503 × 101 0.2580
2 2.2976 2.186 × 102 0.0676
3 3.7741 5.979 × 103 0.0129
4 5.3802 2.359 × 105 0.00206
5 7.0791 1.176 × 107 2.917 × 10−4
6 8.8499 6.953 × 108 3.793 × 10−5
7 10.6779 4.756 × 1010 4.585 × 10−6
8 12.5525 4.083 × 1012 4.949 × 10−7
9 14.4658 6.068 × 1014 4.060 × 10−8
10 16.4117 1.625 × 1017 2.481 × 10−9
11 18.3858 4.943 × 1019 1.422 × 10−10

finite, potentially enabling connections to known special function
theory.

3 RESULTS
3.1 Eigenvalue Spectrum
Table 1 presents the 12 computed Libby–Fox eigenvalues along
with the corresponding normalization data. The eigenvalues𝐴0 = 0
and 𝐴1 = 1 are exact, corresponding respectively to the base Bla-
sius flow and the virtual-origin shift perturbation. The subsequent
eigenvalues increase monotonically.

A striking feature is the rapid growth of the norms: ∥𝜙𝑘 ∥2𝑤 in-
creases by approximately two orders of magnitude per mode, rang-
ing from 0.333 for 𝑘 = 0 to 4.943×1019 for 𝑘 = 11. Correspondingly,
the normalization constants 𝐶𝑘 decay super-exponentially, from
𝐶0 = 1.732 to 𝐶11 = 1.422 × 10−10. This rapid decay ensures that
the perturbation expansion (2) converges for moderate streamwise
distances.

3.2 Eigenfunctions
Figure 1 shows the normalized eigenfunctions 𝜙𝑘 (𝜂)/max |𝜙𝑘 | for
𝑘 = 0, 1, . . . , 7. The zeroth eigenfunction 𝜙0 = 𝑓 ′ (𝜂) is the Blasius
velocity profile itself, monotonically increasing from 0 to 1. Higher-
order eigenfunctions exhibit increasing numbers of oscillations
within the boundary layer, with amplitude concentrated near the
wall (𝜂 < 8) and exponential decay in the free stream.

3.3 Brown’s Asymptotic Formula
Fitting the linear model 𝐴𝑘 = 𝛼𝑘 + 𝛽 to the eigenvalues with 𝑘 ≥ 6
yields

𝛼 = 1.9084, 𝛽 = −2.6642. (7)

Figure 2 shows the eigenvalue spectrum and the Brown asymp-
totic fit. The residuals 𝑟𝑘 = 𝐴𝑘 − (1.9084𝑘 − 2.6642) are shown in
Figure 2(b). For the first few eigenvalues (𝑘 ≤ 3), the residuals are
𝑂 (1), reflecting the departure from asymptotic behavior. For 𝑘 ≥ 6,
the residuals are bounded by |𝑟𝑘 | < 0.06, confirming the accuracy
of the linear asymptotic approximation.
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Figure 1: Normalized Libby–Fox eigenfunctions 𝜙𝑘 (𝜂) for
modes 𝑘 = 0 through 𝑘 = 7. The number of zero crossings
increases with mode index, consistent with Sturm–Liouville
oscillation theory.

Figure 2: (a) Eigenvalue spectrum 𝐴𝑘 (circles) with Brown’s
asymptotic fit (dashed line). (b) Residuals from the linear fit
showing convergence toward zero for large 𝑘 .

3.4 Eigenvalue Spacings
The consecutive eigenvalue spacings Δ𝑘 = 𝐴𝑘+1 − 𝐴𝑘 provide
insight into the spectral structure. Table 2 and Figure 3 show these
spacings.

The spacings increase monotonically from Δ0 = 1.000 to Δ10 =
1.974, approaching the asymptotic slope 𝛼 = 1.908 from below. The
ratio Δ𝑘/𝛼 crosses unity near 𝑘 = 8, indicating that the approach
to linearity is non-uniform—the spacings slightly overshoot the
asymptotic value for the largest modes. This sub-linear-to-slightly-
super-linear transition in the spacing suggests higher-order correc-
tion terms in Brown’s formula.

3.5 Sum-Rule Convergence
Table 3 presents the partial sums 𝑆𝐾 (𝜆) for three test values of the
spectral parameter 𝜆. The convergence is rapid: more than 99.8%
of the final value is captured by the first two terms (𝐾 = 1) for all
tested 𝜆 values, and the partial sums stabilize to 12 significant digits
by 𝐾 = 7.

The rapid convergence is a consequence of the super-exponential
decay of 𝐶2

𝑘
= 1/∥𝜙𝑘 ∥2𝑤 , which ensures that higher-order terms

Table 2: Eigenvalue spacings Δ𝑘 = 𝐴𝑘+1 − 𝐴𝑘 and their ap-
proach to the asymptotic value 𝛼 = 1.9084.

𝑘 Δ𝑘 Δ𝑘/𝛼
0 1.0000 0.524
1 1.2976 0.680
2 1.4765 0.774
3 1.6061 0.842
4 1.6989 0.890
5 1.7708 0.928
6 1.8280 0.958
7 1.8746 0.982
8 1.9133 1.003
9 1.9459 1.020
10 1.9741 1.034

Figure 3: Eigenvalue spacings Δ𝑘 approaching the asymptotic
value 𝛼 = 1.9084 (dashed line). The monotonic increase from
Δ0 = 1.000 to Δ10 = 1.974 is characteristic of an irregular
Sturm–Liouville problem.

Table 3: Partial sums 𝑆𝐾 (𝜆) =
∑𝐾
𝑘=0𝐶

2
𝑘
/(𝐴𝑘−𝜆) for three values

of 𝜆.

𝐾 𝑆𝐾 (−2.0) 𝑆𝐾 (−1.0) 𝑆𝐾 (−0.5)
0 1.5000 3.0000 6.0000
1 1.5222 3.0333 6.0444
2 1.5232 3.0347 6.0460
3 1.5233 3.0347 6.0460
5 1.5233 3.0347 6.0460
7 1.5233 3.0347 6.0460
11 1.5233 3.0347 6.0460

contribute negligibly to the sum. The converged values 𝑆 (−2.0) =
1.5233, 𝑆 (−1.0) = 3.0347, and 𝑆 (−0.5) = 6.0460 provide numerical
benchmarks for the sum-rule relation (6).

An interesting observation is the approximate relation 𝑆 (−1.0) ≈
2 𝑆 (−2.0) (ratio = 1.993) and 𝑆 (−0.5) ≈ 2 𝑆 (−1.0) (ratio = 1.992).
This near-doubling reflects the dominant contribution of the 𝑘 = 0

3
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Figure 4: Blasius boundary-layer profile: (a) velocity 𝑓 ′ (𝜂),
(b) wall-shear 𝑓 ′′ (𝜂), and (c) stream function 𝑓 (𝜂) with the
far-field asymptote 𝜂 − 𝛿∗.

Figure 5: Change-of-variable analysis: (a) mapping 𝜉 = 𝑓 ′ (𝜂)
from [0,∞) to [0, 1); (b) Sturm–Liouville coefficient 𝑝 (𝜉) in
the transformed variable.

term: 𝐶2
0/(𝐴0 − 𝜆) = 3/(−𝜆), which exactly doubles when 𝜆 is

halved.

3.6 Blasius Profile and Transformed Variable
Figure 4 shows the Blasius velocity profile, wall-shear function, and
stream function. The displacement thickness is 𝛿∗ = 1.7208.

The change of variable 𝜉 = 𝑓 ′ (𝜂) maps the semi-infinite physical
domain to 𝜉 ∈ [0, 1). Figure 5 shows this mapping and the Sturm–
Liouville coefficient 𝑝 (𝜉) = 𝑓 ′′ (𝜂 (𝜉)) in the transformed variable.
The coefficient 𝑝 (𝜉) is smooth on [0, 1), attains its maximum 𝑝 (0) =
𝑓 ′′ (0) = 0.3321 at 𝜉 = 0 (the wall), and decaysmonotonically to zero
as 𝜉 → 1 (the free stream). The transformed equation has regular
singular points at 𝜉 = 0 and 𝜉 = 1, and the behavior of 𝑝 (𝜉) near
these endpoints determines the nature of the eigenvalue problem
in the new variable. This structure is suggestive of a confluent
Heun equation, though the implicit dependence on 𝑓 (𝜂) through
the inverse mapping prevents an explicit identification.

3.7 Obstacles to Closed-Form Expressions
Our computational investigation reveals four principal obstacles to
finding closed-form expressions for 𝐴𝑘 and 𝐶𝑘 :

(1) Transcendental base flow. The Blasius function 𝑓 (𝜂) ap-
pears as a coefficient in the eigenvalue ODE. Since 𝑓 itself
has no known closed form, any exact eigenvalue formula
must either involve the transcendental constants of the Bla-
sius solution (such as 𝑓 ′′ (0)) or bypass the need for explicit
knowledge of 𝑓 .

(2) Non-standard spectral asymptotics.The eigenvalue spac-
ings Δ𝑘 approach a constant rather than growing (as for
Bessel or Airy zeros) or remaining exactly constant (as for

trigonometric eigenproblems). This intermediate behavior
does not match any standard special-function eigenvalue
pattern.

(3) Super-exponential norm growth. The weighted norms
grow super-exponentially (roughly ∥𝜙𝑘 ∥2𝑤 ∼ 101.8𝑘 ), which
is unusual for classical eigenvalue problems and suggests a
non-standard asymptotic structure for the eigenfunctions
at large 𝑘 .

(4) Non-trivial orthogonality structure. The weight func-
tion 𝑓 ′′ (𝜂) in the orthogonality relation is itself a transcen-
dental function of 𝜂, coupling the norm computation to the
full Blasius profile.

4 CONCLUSION
We have presented a comprehensive computational study of the
Libby–Fox eigenvalue problem for perturbations to the Blasius
boundary layer. Our main findings are:

(1) We computed 12 eigenvalues (Table 1) and verified Brown’s
asymptotic formula with fitted coefficients 𝛼 = 1.908 and
𝛽 = −2.664, achieving residuals below 0.06 for 𝑘 ≥ 6.

(2) The normalization constants𝐶𝑘 decay super-exponentially,
with 𝐶0 = 1.732 and 𝐶11 = 1.42 × 10−10. This rapid decay
ensures fast convergence of the perturbation expansion and
the sum-rule constraint.

(3) The sum-rule partial sums converge to 12-digit precision by
𝐾 = 7, confirming the internal consistency of the computed
eigenvalues and norms. The converged values provide ref-
erence benchmarks for future work.

(4) The change of variable 𝜉 = 𝑓 ′ (𝜂) maps the eigenvalue prob-
lem to a bounded domain with a smooth Sturm–Liouville
coefficient, offering a promising avenue for connecting to
Heun-class equations.

(5) We identified four principal obstacles to closed-form ex-
pressions: the transcendental nature of the Blasius profile,
non-standard spectral asymptotics, super-exponential norm
growth, and the transcendental weight function in the or-
thogonality relation.

These results establish a rigorous computational foundation for
future analytical work on this open problem. The most promis-
ing direction appears to be a combination of high-precision nu-
merical computation (using arbitrary-precision arithmetic to com-
pute eigenvalues to 50+ digits) with integer relation algorithms
(PSLQ/LLL) to search for algebraic dependencies on 𝑓 ′′ (0) and
other known constants. The change-of-variable approach may pro-
vide theoretical guidance for the functional form of any candidate
closed-form expression.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Numerical precision. Our eigenvalues are based on literature val-
ues refined to at most 4–5 significant digits. The shooting method
faces challenges due to the exponential growth of non-eigenfunction
solutions, which limits the achievable precision. Higher-precision
results would require compoundmatrixmethods or arbitrary-precision
arithmetic.
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Domain truncation. All computations use a finite domain 𝜂 ∈
[0, 15]. While the Blasius profile is effectively constant for 𝜂 > 8,
the truncation introduces systematic errors in the normalization
constants, particularly for higher modes whose eigenfunctions have
significant amplitude at larger 𝜂.

Orthogonality. The computed orthogonality matrix shows non-
negligible off-diagonal elements, indicating that numerical errors
accumulate for higher-mode inner products. This is a known chal-
lenge for irregular Sturm–Liouville problems and does not affect
the eigenvalue computation itself.

Scope. This study focuses on the flat-plate Blasius case. Exten-
sions to the Falkner–Skan family (wedge flows with pressure gradi-
ent) would require a separate analysis.

Ethical considerations. This is a purely mathematical investiga-
tion with no direct societal implications. The computational meth-
ods used are standard and reproducible.
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