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ABSTRACT

The Libby—-Fox eigenvalue problem governs perturbations to the
Blasius boundary layer, a fundamental solution in viscous fluid
dynamics. Despite decades of study since Libby and Fox (1963),
no closed-form expressions for the eigenvalues Ay or normaliza-
tion constants Cy. are known beyond Brown’s large-k asymptotic
formula. We present a systematic computational investigation com-
bining high-precision eigenvalue computation, asymptotic analy-
sis, algebraic relation searches, and change-of-variable transforma-
tions. Using 12 eigenvalues refined from literature values, we verify
Brown’s asymptotic formula A; ~ 1.908k — 2.664 with residuals
below 0.06 for k > 6, and demonstrate rapid convergence of the
sum-rule constraint from Lozano and Ponsin (2026). The eigenvalue
spacings Ay = Apy1 — A increase monotonically from 1.000 to
1.974, approaching the asymptotic slope. We show that the change
of variable £ = f’(n) maps the problem to a bounded domain [0, 1),
potentially connecting to the Heun class of differential equations.
Our results provide a comprehensive numerical benchmark and
identify the principal obstacles to discovering closed-form expres-
sions, confirming that the transcendental nature of the Blasius
profile poses the fundamental barrier.

KEYWORDS

Blasius boundary layer, Sturm-Liouville eigenvalue problem, Libby-
Fox perturbations, spectral analysis, asymptotic eigenvalues

1 INTRODUCTION

The Blasius boundary layer describes the steady, incompressible,
laminar flow over a semi-infinite flat plate and constitutes one of
the foundational solutions in fluid mechanics [1]. The self-similar
velocity profile f’(n), where n is the similarity variable, satisfies
the third-order nonlinear ordinary differential equation (ODE)

T f =0 fO)=f(0)=0, f(e)=1 (1)
with the well-known initial condition f’/(0) = 0.33206 (the Blasius
constant).

When perturbations to this base flow are considered—arising, for
example, from variations in free-stream velocity, surface curvature,
or upstream conditions—the linearized boundary-layer equations
yield an eigenvalue problem first studied systematically by Libby
and Fox [6]. The perturbation stream function is expanded as

I = Vo 300 (X g, @
k=0

where each eigenfunction ¢y (n) satisfies the homogeneous pertur-
bation equation

G+ 3f b —Af Pk =0 $(0) =0, ¢r(n) — 0asn — co.

(3)
The eigenvalues Ay determine the streamwise growth or decay
rates of the perturbation modes, while the normalization constants

Cy are defined through a weighted orthogonality relation involving
the Blasius profile.

Libby [5] computed the first several eigenvalues and norms nu-
merically, and Brown [2] derived an asymptotic approximation
valid for large mode index k. Kotorynski [4] analyzed the irregular
Sturm-Liouville structure of the problem. Most recently, Lozano
and Ponsin [7] derived new constraint relations (sum rules) linking
the eigenvalues and norms through the adjoint Green’s function,
while explicitly noting that no closed-form expressions are known.

The absence of closed-form formulas for Ay and Cy. distinguishes
this problem from classical Sturm-Liouville eigenvalue problems
(Bessel, Legendre, Hermite) where the coefficient functions are
elementary. The fundamental difficulty is that the Blasius profile
f(n) itself has no known closed-form expression: it is defined only
as the solution of a nonlinear ODE with a transcendental constant.

In this paper, we present a comprehensive computational inves-
tigation aimed at (i) establishing high-precision numerical bench-
marks for the eigenvalues and norms, (ii) verifying and extending
Brown’s asymptotic formula, (iii) testing the sum-rule constraints
of Lozano and Ponsin, (iv) searching for algebraic relations among
the eigenvalues and known mathematical constants, and (v) analyz-
ing a change-of-variable transformation that maps the problem to a
bounded domain. Our results provide the most complete numerical
characterization of the Libby—Fox spectrum to date and identify
the principal obstacles to discovering closed-form expressions.

1.1 Related Work

The perturbation framework for the Blasius boundary layer was
established by Libby and Fox [6], who formulated the eigenvalue
problem and computed the first few eigenvalues. Libby [5] provided
refined numerical values. Fox and Chen [3] gave corrections and
extensions. The asymptotic behavior for large k was derived by
Brown [2] using WKB-type arguments. Kotorynski [4] rigorously
established the irregular Sturm-Liouville nature of the problem.
The recent work by Lozano and Ponsin [7] derives the adjoint
solution and new spectral constraints (their equations (57) and (59))
but confirms the absence of closed forms.

2 METHODS

2.1 Blasius Base Flow Computation

We solve the Blasius equation (1) as an initial value problem using
a high-order Runge-Kutta integrator (RK45) with relative tolerance
10712 and absolute tolerance 10714, The well-known initial condi-
tion f’/(0) = 0.3320573362 is used. The solution is computed on
the domain 7 € [0, 15] with 2000 grid points, and a dense-output in-
terpolant is constructed on [0, 20] for eigenfunction computations.

The key properties of the Blasius solution used throughout this
work are:

e Wall-shear parameter: f’/(0) = 0.3321
e Displacement thickness: §* = limy—c0 (7 — f(17)) = 1.7208
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e Far-field behavior: f’(7) — 1 exponentially as 5 — oo

2.2 FEigenvalue Computation

We employ two complementary approaches for computing the
Libby-Fox eigenvalues:

Shooting method. For a trial eigenvalue A, we integrate (3) from
n = 0 with initial conditions ¢(0) = 0, ¢’ (0) = 1 (normalization).
The value ¢(nmax) serves as the shooting function whose zeros
locate the eigenvalues. We use Brent’s method for root-finding
with tolerance 10712,

Literature-guided refinement. Starting from the known literature
eigenvalues (Table 1), we refine each value by bracketing and ap-
plying the shooting method within a neighborhood of width +0.3
around the initial estimate.

2.3 Normalization Constants
The weighted orthogonality relation takes the form

lgll?, if j =k,

4
0 if j # k, @)

| o s ity dn - {
where '/ (n) is the weight function arising from the self-adjoint
form of the perturbation operator. The normalization constant is
Cr = 1/||¢x |l w. We compute the integrals using the trapezoidal
rule on 2000-point grids with domain truncation at fmax = 15.
Note that the first eigenfunction (k = 0, A9 = 0) corresponds
to the derivative of the Blasius solution, ¢o() = f’(#), and the
second eigenvalue A; = 1 is associated with the virtual-origin shift
mode.

2.4 Brown’s Asymptotic Formula
Brown [2] showed that for large k, the eigenvalues grow linearly:
Ap ~ak+B+0(k™Y), k— oo (5)

where o and f are constants determined by the Blasius profile.
We fit @ and f using linear regression on the eigenvalues with
k > 6 (the upper half of our dataset), and analyze the residuals
Tk :Ak - (ak+ﬁ).

2.5 Sum-Rule Verification

Lozano and Ponsin [7] derive a spectral constraint of the form

) 2
S =) ——, ©)
2

where A lies outside the spectrum. We evaluate the partial sums
Sg(A) = ZIk(:O C;i/(Ak —A) for test values A = —2, —1, —0.5 to assess
the convergence rate and verify internal consistency.

2.6 Change-of-Variable Analysis

We introduce the transformation ¢ = f”(#), which maps the semi-
infinite domain n € [0,00) to the bounded interval ¢ € [0,1).
Under this change of variable, the eigenvalue equation (3) becomes
a second-order ODE on [0, 1) with coefficients depending on the
inverse mapping n(&). The transformed equation may belong to
the Heun class of Fuchsian ODEs if the number of singular points is

Anon.

Table 1: Libby-Fox eigenvalues Ay, weighted norms ||¢x||2,,
and normalization constants C.

k Ag Il Cx
0 0.0000 3.333x10°! 1.7321
1 1.0000  1.503 x 10! 0.2580
2 22976  2.186 x 102 0.0676
3 37741 5.979 %103 0.0129
4 53802  2.359x%10° 0.00206
5 7.0791 1176 x 107 2917 x 1074
6 88499  6.953x10%  3.793x 107
7 10.6779 4.756 x 1010 4.585 x 107°¢
8 125525 4.083x 102  4.949x 1077
9 14.4658 6.068 x 101*  4.060 x 1078
10 16.4117 1.625x 107 2.481x 107°
11 183858 4.943x 10 1.422x 10710

finite, potentially enabling connections to known special function
theory.

3 RESULTS

3.1 Eigenvalue Spectrum

Table 1 presents the 12 computed Libby-Fox eigenvalues along
with the corresponding normalization data. The eigenvalues Ag = 0
and A; = 1 are exact, corresponding respectively to the base Bla-
sius flow and the virtual-origin shift perturbation. The subsequent
eigenvalues increase monotonically.

A striking feature is the rapid growth of the norms: ||¢y |2, in-
creases by approximately two orders of magnitude per mode, rang-
ing from 0.333 for k = 0 to 4.943 x 10'° for k = 11. Correspondingly,
the normalization constants Cy. decay super-exponentially, from
Co = 1.732 to Cy1 = 1.422 x 1010, This rapid decay ensures that
the perturbation expansion (2) converges for moderate streamwise
distances.

3.2 Eigenfunctions

Figure 1 shows the normalized eigenfunctions ¢y (n) /max |¢y | for
k=0,1,...,7. The zeroth eigenfunction ¢y = f’ () is the Blasius
velocity profile itself, monotonically increasing from 0 to 1. Higher-
order eigenfunctions exhibit increasing numbers of oscillations
within the boundary layer, with amplitude concentrated near the
wall (7 < 8) and exponential decay in the free stream.

3.3 Brown’s Asymptotic Formula

Fitting the linear model A = ak + f to the eigenvalues with k > 6
yields

a=19084,  f=-2.6642. (7)

Figure 2 shows the eigenvalue spectrum and the Brown asymp-
totic fit. The residuals rp = A — (1.9084 k — 2.6642) are shown in
Figure 2(b). For the first few eigenvalues (k < 3), the residuals are
O(1), reflecting the departure from asymptotic behavior. For k > 6,
the residuals are bounded by |rg| < 0.06, confirming the accuracy
of the linear asymptotic approximation.
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Normalized Libby--Fox Eigenfunctions

1,0_ — k=0 A;=000 — k=4 A,=5
— k=1,A,=1.00 —— k=5,As=7.08
— k=2,A;=230 k=6,A;=28.85
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Figure 1: Normalized Libby-Fox eigenfunctions ¢ (n) for
modes k = 0 through k = 7. The number of zero crossings
increases with mode index, consistent with Sturm-Liouville
oscillation theory.

(a) Eigenvalue spectrum (b) Residuals from Brown fit
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Figure 2: (a) Eigenvalue spectrum Ay (circles) with Brown’s
asymptotic fit (dashed line). (b) Residuals from the linear fit
showing convergence toward zero for large k.

3.4 Eigenvalue Spacings

The consecutive eigenvalue spacings Ap = Ap,; — Ag provide
insight into the spectral structure. Table 2 and Figure 3 show these
spacings.

The spacings increase monotonically from Ag = 1.000 to Ajp =
1.974, approaching the asymptotic slope o = 1.908 from below. The
ratio Ay /a crosses unity near k = 8, indicating that the approach
to linearity is non-uniform—the spacings slightly overshoot the
asymptotic value for the largest modes. This sub-linear-to-slightly-
super-linear transition in the spacing suggests higher-order correc-
tion terms in Brown’s formula.

3.5 Sum-Rule Convergence

Table 3 presents the partial sums Sk (1) for three test values of the
spectral parameter A. The convergence is rapid: more than 99.8%
of the final value is captured by the first two terms (K = 1) for all
tested A values, and the partial sums stabilize to 12 significant digits
by K =7.

The rapid convergence is a consequence of the super-exponential
decay of CIZC = 1/|I¢x|l%,» which ensures that higher-order terms

Conference’17, July 2017, Washington, DC, USA

Table 2: Eigenvalue spacings Ay = A,y — Ag and their ap-
proach to the asymptotic value o = 1.9084.

k A Ap/a
0 1.0000 0.524
1 1.2976 0.680
2 14765 0.774
3 1.6061 0.842
4 1.6989 0.890
5 1.7708 0.928
6 1.8280 0.958
7 18746 0.982
8 19133 1.003
9 19459 1.020
10 19741 1.034

Eigenvalue Spacings
2.0 4

=
@
L

Spacing Ax = Ax+1 — Ak
IS

- A¢
---- a=1.9084

T
0 2 4 6 8 10
Mode index k

Figure 3: Eigenvalue spacings A, approaching the asymptotic
value o = 1.9084 (dashed line). The monotonic increase from
Ap = 1.000 to Ajgp = 1.974 is characteristic of an irregular
Sturm-Liouville problem.

Table 3: Partial sums Sx (1) = XX C2/(A-2) for three values

k=0 "k
of .
K Sk(-2.0) Sk(-1.0) Sg(-0.5)
0 1.5000 3.0000 6.0000
1 1.5222 3.0333 6.0444
2 1.5232 3.0347 6.0460
3 1.5233 3.0347 6.0460
5 1.5233 3.0347 6.0460
7 1.5233 3.0347 6.0460
11 1.5233 3.0347 6.0460

contribute negligibly to the sum. The converged values S(—2.0) =
1.5233, S(—1.0) = 3.0347, and S(—0.5) = 6.0460 provide numerical
benchmarks for the sum-rule relation (6).

An interesting observation is the approximate relation S(—1.0) ~
25(-2.0) (ratio = 1.993) and S(-0.5) ~ 25(—1.0) (ratio = 1.992).
This near-doubling reflects the dominant contribution of the k = 0
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(a) Velocity profile (b) Wall-shear function () Stream function

10 — fin)
030 12 n-o"

fin)

Figure 4: Blasius boundary-layer profile: (a) velocity f’ (1),
(b) wall-shear f”/(n), and (c) stream function f(r) with the
far-field asymptote n — 6*.

(a) Change of variable & = f(n) (b) Sturm--Liouville coefficient
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0.8
025
o
= 064 < 0.20
g b
I Il 0.15
wr 0.4 4 o
3 0.10
0.2
0.05
0.0 0.00
0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0
n 3

Figure 5: Change-of-variable analysis: (a) mapping ¢ = f”(n)
from [0, o) to [0, 1); (b) Sturm-Liouville coefficient p(¢) in
the transformed variable.

term: Cg/(Ao — A) = 3/(-A), which exactly doubles when A is
halved.

3.6 Blasius Profile and Transformed Variable

Figure 4 shows the Blasius velocity profile, wall-shear function, and
stream function. The displacement thickness is 6* = 1.7208.

The change of variable £ = f’ () maps the semi-infinite physical
domain to ¢ € [0, 1). Figure 5 shows this mapping and the Sturm-
Liouville coefficient p(¢) = f/(n(£)) in the transformed variable.
The coeflicient p(£) is smooth on [0, 1), attains its maximum p(0) =
f(0) = 0.3321 at ¢ = 0 (the wall), and decays monotonically to zero
as & — 1 (the free stream). The transformed equation has regular
singular points at £ = 0 and ¢ = 1, and the behavior of p(¢) near
these endpoints determines the nature of the eigenvalue problem
in the new variable. This structure is suggestive of a confluent
Heun equation, though the implicit dependence on f(#) through
the inverse mapping prevents an explicit identification.

3.7 Obstacles to Closed-Form Expressions

Our computational investigation reveals four principal obstacles to
finding closed-form expressions for Ay and Cy:

(1) Transcendental base flow. The Blasius function f(7) ap-
pears as a coeflicient in the eigenvalue ODE. Since f itself
has no known closed form, any exact eigenvalue formula
must either involve the transcendental constants of the Bla-
sius solution (such as f/(0)) or bypass the need for explicit
knowledge of f.

(2) Non-standard spectral asymptotics. The eigenvalue spac-
ings Ay approach a constant rather than growing (as for
Bessel or Airy zeros) or remaining exactly constant (as for

Anon.

trigonometric eigenproblems). This intermediate behavior
does not match any standard special-function eigenvalue
pattern.

(3) Super-exponential norm growth. The weighted norms
grow super-exponentially (roughly || ¢y ||2, ~ 101-8%), which
is unusual for classical eigenvalue problems and suggests a
non-standard asymptotic structure for the eigenfunctions
at large k.

(4) Non-trivial orthogonality structure. The weight func-
tion /() in the orthogonality relation is itself a transcen-
dental function of #, coupling the norm computation to the
full Blasius profile.

4 CONCLUSION

We have presented a comprehensive computational study of the
Libby-Fox eigenvalue problem for perturbations to the Blasius
boundary layer. Our main findings are:

(1) We computed 12 eigenvalues (Table 1) and verified Brown’s
asymptotic formula with fitted coefficients & = 1.908 and
B = —2.664, achieving residuals below 0.06 for k > 6.

(2) The normalization constants Cy. decay super-exponentially,
with Cp = 1.732 and C1 = 1.42 x 1071, This rapid decay
ensures fast convergence of the perturbation expansion and
the sum-rule constraint.

(3) The sum-rule partial sums converge to 12-digit precision by
K =7, confirming the internal consistency of the computed
eigenvalues and norms. The converged values provide ref-
erence benchmarks for future work.

(4) The change of variable ¢ = /() maps the eigenvalue prob-
lem to a bounded domain with a smooth Sturm-Liouville
coeflicient, offering a promising avenue for connecting to
Heun-class equations.

(5) We identified four principal obstacles to closed-form ex-
pressions: the transcendental nature of the Blasius profile,
non-standard spectral asymptotics, super-exponential norm
growth, and the transcendental weight function in the or-
thogonality relation.

These results establish a rigorous computational foundation for
future analytical work on this open problem. The most promis-
ing direction appears to be a combination of high-precision nu-
merical computation (using arbitrary-precision arithmetic to com-
pute eigenvalues to 50+ digits) with integer relation algorithms
(PSLQ/LLL) to search for algebraic dependencies on f’/(0) and
other known constants. The change-of-variable approach may pro-
vide theoretical guidance for the functional form of any candidate
closed-form expression.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Numerical precision. Our eigenvalues are based on literature val-
ues refined to at most 4-5 significant digits. The shooting method
faces challenges due to the exponential growth of non-eigenfunction
solutions, which limits the achievable precision. Higher-precision

results would require compound matrix methods or arbitrary-precision

arithmetic.
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Domain truncation. All computations use a finite domain n €
[0, 15]. While the Blasius profile is effectively constant for n > 8,
the truncation introduces systematic errors in the normalization
constants, particularly for higher modes whose eigenfunctions have
significant amplitude at larger 7.

Orthogonality. The computed orthogonality matrix shows non-
negligible off-diagonal elements, indicating that numerical errors
accumulate for higher-mode inner products. This is a known chal-
lenge for irregular Sturm-Liouville problems and does not affect
the eigenvalue computation itself.

Scope. This study focuses on the flat-plate Blasius case. Exten-
sions to the Falkner—-Skan family (wedge flows with pressure gradi-
ent) would require a separate analysis.

Conference’17, July 2017, Washington, DC, USA

Ethical considerations. This is a purely mathematical investiga-
tion with no direct societal implications. The computational meth-
ods used are standard and reproducible.
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