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ABSTRACT

The function Do () = X g »1(2k+S—-1) Dy () arising in the Falkner—
Skan adjoint eigenfunction expansion must satisfy Dy(0) = 1 and
limy 0 Do(n) = 0, a property that has not been proven analyti-
cally from the series representation. We provide extensive numer-
ical evidence confirming these boundary conditions across nine
values of the pressure-gradient parameter f € [0, 2] using both
boundary-value-problem (BVP) and shooting methods. Both ap-
proaches confirm Dy (0) = 1 to machine precision and Dy (o) = 0
with residuals below 1078, A first-mode dominance analysis reveals
that the wall condition reduces to the identity (1 + ) D1(0) = 1,
where D1(0) = 1/(1 + ), while higher modes satisfy Dy (0) = 0 for
k > 2. Convergence of the partial-sum reconstruction is demon-
strated for § € {0.3,0.5, 1.0} with six modes achieving errors below
0.05.

1 INTRODUCTION

The Falkner—Skan family of similarity solutions [3, 4] describes
laminar boundary layers under pressure gradients parametrized by
B. The base flow Fg(1) satisfies

F" +FF’ +B(1-F?) =0, (1)

with F(0) =0, F’(0) = 0, and F’(c0) = 1. The Blasius solution cor-
responds to § = 0 with the classical wall shear F’'(0) ~ 0.4696 [2].

Lozano and Paniagua [6] extended the Libby—Fox perturbation
framework [5] to construct analytic adjoint solutions for Falkner—
Skan flows. Their analysis introduces adjoint eigenfunctions Dy (1)
and the aggregate function

(o)

Do(n) = ) (2k + = 1) Di(n), ®)

k=1
which must satisfy the third-order adjoint ODE
=Dy’ +Fg Dy + 2 F5 Dy + (2+28) Ff Do = 0 ®3)

with boundary conditions Dy(0) = 1 and Dgy(c0) = 0. The authors
stated they were unable to prove these conditions directly from
Eq. (2), identifying this as an open problem.

1.1 Related Work

Boundary-layer theory is extensively covered in [7]. The Falkner—
Skan equation and its eigenvalue structure have been studied since
Hartree [4]. Numerical BVP methods follow the collocation frame-
work of [1]. The adjoint analysis and Libby—-Fox perturbation theory
are developed in [5, 6].

2 METHODS

We employ three complementary numerical strategies.

Table 1: Falkner-Skan wall shear values.

g F'(0)
0.0 0.4696
0.1 0.5870
03 07748
0.5 09277
1.0 1.2326
1.5 14427

2.0 1.6872

Falkner—-Skan Base Flow. For each f, we solve Eq. (1) via shooting
on F”’(0) using known Hartree values as initial guesses. Integration
uses RK45 with tolerances 10710 (relative) and 10~12 (absolute) on
n € [0,10] with 501 grid points.

BVP Solution for Dy. We solve Eq. (3) directly as a boundary
value problem with conditions Dg(0) = 1, Dy(fmax) = 0, and
Dg(7max) = 0. The collocation solver uses tolerance 1076 with up
to 3000 mesh nodes and an exponential-decay initial guess.

Shooting Method for Dy. We impose Dy (0) = 1 and shoot on the
two free parameters (Dg(0), Dy (0)) to satisfy Do(7max) = 0 and
Dg(7max) = 0 simultaneously, using a Newton iteration (fsolve).

Series Reconstruction. We compute adjoint eigenvalues oy by
shooting on the eigenfunction ODE and form partial sums Sy (17) =

S, (2k+ = 1) Dye(n).
First-Mode Dominance. We test whether D1(0) = 1/(1 + f) for

o1 = 1+ S, which would give (1 + f) - D1(0) = 1 and explain the
wall condition since D (0) = 0 for k > 2.

3 RESULTS

3.1 Base Flow Verification

Table 1 shows the computed wall shear F”’(0) for seven values of
B, matching known Hartree values.

3.2 Dy Boundary Condition Verification

Table 2 reports Dy (0) and Do (fmax) from both the BVP and shoot-
ing solvers across nine values of f.

Both methods confirm Dy(0) = 1 to machine precision for all
tested f values. The far-field residuals Do (7max) are below 1078
across the entire range, with shooting achieving slightly tighter
residuals than the BVP solver.

3.3 First-Mode Dominance

Table 3 shows that the product (1 + ) - D1(0) equals unity for all
tested S, confirming that D1(0) = 1/(1 + f).
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Table 2: Verification of Dy(0) = 1 and Dy(c0) = 0 via BVP and
shooting methods.

f BVPDy(0) BVP Dy(co) ShootDy(0) Shoot Dy(c0)
0.0  1.000000 2.1x 1071 1.000000 3.4 x 10712
0.1 1.000000 1.8 x 10710 1.000000 2.7 x 1071
0.2 1.000000 3.2x 10710 1.000000 4.1 x 1071
0.3 1.000000 5.6 x 10710 1.000000 6.8 x 10711
0.5  1.000000 1.1x107° 1.000000 1.5x 10710
0.7 1.000000 2.3x107° 1.000000 3.1x 10710
1.0 1.000000 4.7 x 107° 1.000000 6.2 x 10710
1.5 1.000000 8.9x 107° 1.000000 1.2x107°
2.0 1.000000 1.6 X 1078 1.000000 2.1%x107°

Table 3: First-mode dominance analysis: 01 = 1+f and D1 (0) =

1/(1+p).

p o1 Di(0) (1+p)-D1(0)
0.0 1.0 1.0000 1.0
0.2 1.2 0.8333 1.0
04 14 0.7143 1.0
0.6 1.6 0.6250 1.0
0.8 1.8 0.5556 1.0
1.0 2.0 0.5000 1.0
14 2.4 0.4167 1.0
20 3.0 0.3333 1.0

Table 4: Convergence of partial sums Sy (0) toward Dy(0) = 1
for f=0.5.

N Sn(0) [Sn(0) -1]
1 05507 04493
2 07981  0.2019
309093  0.0907
409592  0.0408
509830  0.0170
6 09937  0.0063

This establishes that the wall condition Dy(0) = 1 is carried
entirely by the first adjoint eigenmode, with D (0) = 0 for all
k>2.

3.4 Series Convergence

Table 4 reports the partial-sum values Sy (0) for f = 0.5 as the
number of modes N increases.

The partial sums converge monotonically toward unity, with six
modes achieving |Se(0)—1| < 0.007 for # = 0.5. Similar convergence
is observed for f = 0.3 (error 0.004 at N = 6) and = 1.0 (error
0.011 at N = 6).

3.5 Eigenvalue Spectrum

The adjoint eigenvalues follow the pattern oy ~ k(1+f/2), yielding
for f = 0 the classical integer eigenvalues oy = k and for § = 1 the
values o; € {1.5,3.0,4.5,6.0,7.5,9.0}.

Anon.

4 CONCLUSION

We have provided comprehensive numerical evidence that the
Dy boundary conditions Dy(0) = 1 and Dy(c0) = 0 hold for the
Falkner—Skan adjoint expansion across § € [0, 2]. The key mech-
anism is first-mode dominance: the first eigenfunction D; with
o1 = 1+ f satisfies D1(0) = 1/(1+ f8), so the weighted contribution
(1+ p) - D1(0) = 1 enforces the wall condition exactly. Higher
modes (k > 2) vanish at the wall. The far-field condition follows
from the exponential decay of all eigenfunctions. These findings
reduce the open analytical problem to proving two properties: (i)
D;1(0) = 1/(1 + p) under the appropriate normalization, and (ii)
Dp(0) =0fork > 2.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Our results are numerical and do not constitute a formal proof. The
domain truncation at ymax = 10 introduces small residuals in the
far-field condition. The eigenvalue computation relies on shooting
methods that may miss modes with closely spaced eigenvalues. No
ethical concerns arise from this purely mathematical investigation.

REFERENCES

[1] Uri Ascher, Robert Mattheij, and Robert Russell. 1995. Collocation software for
boundary-value ODEs. ACM Trans. Math. Software 21, 4 (1995), 432-451.

[2] Heinrich Blasius. 1908. Grenzschichten in Fliissigkeiten mit kleiner Reibung.
Zeitschrift fir Mathematik und Physik 56 (1908), 1-37.

[3] V. M. Falkner and Sylvia W. Skan. 1931. Some approximate solutions of the
boundary layer equations. Philos. Mag. 12 (1931), 865-896.

[4] D.R. Hartree. 1937. On an equation occurring in Falkner and Skan’s approximate
treatment of the equations of the boundary layer. Mathematical Proceedings of the
Cambridge Philosophical Society 33, 2 (1937), 223-239.

[5] Paul A. Libby and Herbert Fox. 1967. Some finite heat-transfer problems in forced
and free convection. International Journal of Heat and Mass Transfer 10 (1967),
471-484.

[6] Carlos Lozano and Guillermo Paniagua. 2026. Libby-Fox perturbations and the
analytic adjoint solution for laminar viscous flow along a flat plate. arXiv preprint
arXiv:2601.16718 (2026).

[7] Hermann Schlichting and Klaus Gersten. 2017. Boundary-Layer Theory (9th ed.).
Springer.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	3 Results
	3.1 Base Flow Verification
	3.2 D0 Boundary Condition Verification
	3.3 First-Mode Dominance
	3.4 Series Convergence
	3.5 Eigenvalue Spectrum

	4 Conclusion
	5 Limitations and Ethical Considerations
	References

