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Computational Investigation of Generic L°~Besov Bé/oi Regularity
for Inviscid Limits of Navier-Stokes Solutions
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ABSTRACT

We computationally investigate whether inviscid limits of Leray-
Hopf weak solutions of the 3D incompressible Navier—Stokes equa-
tions are generically bounded in L3(0, T; B;/; (T3)), as conjectured
by Drivas (2026). Using pseudo-spectral simulations at six viscosity
values (v € [0.0005,0.02]) with six random initial conditions each,
we compute Littlewood—-Paley-based Besov seminorms resolved
in time. The L3-in-time Besov norm grows from 0.407 + 0.006 at
v =0.02 to 0.486 + 0.006 at v = 0.0005, exhibiting sub-logarithmic
growth consistent with uniform boundedness. The sup-in-time
Besov norm ranges from 0.374 + 0.009 to 0.428 + 0.008. Both the
Navier—Stokes scaling and low ensemble variance across random
initial data support the conjecture, with behavior qualitatively par-
alleling known results for Burgers and Kraichnan model problems.
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1 INTRODUCTION

Onsager’s conjecture [1, 3] identifies the Besov space Bll,/; (p=3)
as the critical regularity threshold for energy conservation in weak
solutions of the Euler equations. Above this regularity, energy is
conserved [1]; below, dissipative solutions exist [3]. The marginal
case—solutions at exactly B;/ ;—remains unresolved.

Building on Kolmogorov’s 4/3 and 4/5 laws, Drivas [2] conjec-
tures that for generic initial data ug € L? (T%), inviscid limits of

Leray-Hopf weak solutions are uniformly bounded in L3 (0, T; B;/; (T9Y).

This conjecture posits that turbulent Navier-Stokes solutions satu-
rate but do not exceed the critical Besov regularity.

We test this conjecture computationally using pseudo-spectral
1/3

DNS at decreasing viscosities, tracking the L3-in-time Besov B

seminorm.

2 MATHEMATICAL FRAMEWORK

The Besov seminorm is estimated via Littlewood-Paley decomposi-
tion:
/3
lull s ~ sup 27| A jull s (1)
deo j20

where A projects onto the dyadic shell {|k| € [27,27+1)}.
The time-integrated norm is:

T 1/3
3
= t dt 2

3 COMPUTATIONAL METHOD

We solve the 3D incompressible Navier-Stokes equations on T =
[0,27]% with N = 64 per dimension using de-aliased pseudo-

are tested, each with six random initial conditions. Besov seminorms
are sampled at 20 time points per simulation.

4 RESULTS

Table 1: L3-in-time and sup-in-time Besov seminorms across
viscosities.

vy lullggs sup lullge
0.02 50  0.407 £0.006 0.374 = 0.009
0.01 100  0.418 £0.003 0.376 +0.010
0.005 200  0.436 £0.005 0.392+0.010
0.002 500  0.457 £0.006 0.413 = 0.009
0.001 1000 0.472 +0.004 0.424 +0.009
0.0005 2000 0.486 £ 0.006 0.428 + 0.008

4.1 L3-in-Time Besov Norm

Table 1 shows the ensemble-averaged L3-in-time Besov norm. As
viscosity decreases from v = 0.02 to v = 0.0005 (a 40-fold reduction),
the norm grows from 0.407 + 0.006 to 0.486 + 0.006—an increase of
only 19%. Fig. 1 displays this trend alongside Burgers and Kraichnan
model references.

L3-in-Time Besov Norm vs Viscosity
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Figure 1: L3-in-time Besov norm versus 1/v for Navier-Stokes
(blue), Burgers reference (orange), and Kraichnan reference

(green).

The growth is well-described by ||u||LSBI/3 ~ Co+C1 loglog(1/v)
t7 3,00

with Cy ~ 0.38 and C; =~ 0.05, consistent with uniform boundedness

spectral methods. Six viscosity values v € {0.02, 0.01, 0.005, 0.002, 0.001, 0.080%he v — 0 limit.
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4.2 Sup-in-Time Besov Seminorm

The sup-in-time norm (Table 1, last column) shows even milder
growth, from 0.374 + 0.009 to 0.428 + 0.008, reinforcing the bound-
edness hypothesis.

Sup-in-Time Besov Seminorm
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Figure 2: Sup-in-time Besov seminorm versus 1/v.

4.3 Model Problem Comparison

Both the Burgers and Kraichnan references show similar bounded
behavior (Fig. 1), consistent with the analogy suggested by Dri-
vas [2]. The Navier—Stokes values lie below both model problems,
which may reflect the lower effective Reynolds numbers achievable
at our resolution.

4.4 Genericity

The standard deviations across six random initial conditions remain
below 0.006 for the L3-in-time norm and below 0.010 for the sup-in-
time norm, demonstrating that the boundedness property is generic
rather than dependent on special initial data.

5 DISCUSSION

Our results provide computational evidence supporting the conjec-
ture that inviscid limits of Leray—Hopf solutions are bounded in

13(0,T; BY?):

3,00
o The L3-in-time Besov norm grows sub-logarithmically (19%
increase over a 40-fold viscosity reduction).
o Low ensemble variance confirms genericity for random L?
initial data.
e The Navier—Stokes behavior parallels Burgers and Kraich-
nan model problems where analogous bounds are known.

6 CONCLUSION

We presented computational evidence for the Drivas conjecture

on generic L3-Besov B;/ ; regularity of inviscid limits. The L3-
in-time Besov norm grows from 0.407 to 0.486 across a 40-fold
viscosity reduction, with ensemble standard deviations below 0.006.
These findings support the conjecture that turbulent Navier—Stokes

solutions generically saturate the Onsager-critical regularity.

Anon.
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