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Computational Evidence for the Genericity of Alignment-Induced
Self-Regularization from Kolmogorov’s 4/5 Law
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ABSTRACT
Kolmogorov’s 4/5 law is one of the few exact results in turbu-
lence theory, relating the third-order longitudinal structure func-
tion to the energy dissipation rate. Under an additional alignment
hypothesis—that velocity increments are preferentially aligned
with the separation vector—prior work has shown that limited
Besov regularity can be inferred from the 4/5 law. Whether this
self-regularization is a generic property of turbulent flows, holding
without special alignment conditions, remains an open question.
We present a computational investigation using pseudo-spectral
simulations of forced 3D Navier–Stokes equations on the periodic
torus across five viscosity values (𝜈 ∈ [0.0005, 0.01]) with eight
random initial conditions each. Our ensemble analysis reveals that:
(1) velocity-increment alignment is a persistent statistical feature,
with mean alignment ⟨| cos𝜃 |⟩ increasing from 0.525 ± 0.020 to
0.561 ± 0.021 as the Reynolds number grows; (2) the Besov 𝐵

1/3
3,∞

seminorm remains bounded between 0.345±0.024 and 0.397±0.020
across viscosities; and (3) the compensated 4/5 law ratio converges
toward −4/5 with decreasing variance. These findings provide
computational evidence supporting the conjecture that alignment-
induced self-regularization is generic.

KEYWORDS
turbulence, Kolmogorov 4/5 law, Besov regularity, Navier–Stokes,
alignment, self-regularization

1 INTRODUCTION
The Kolmogorov 4/5 law [6] states that in fully developed turbu-
lence, the third-order longitudinal structure function satisfies

𝑆3 (𝑟 ) = ⟨(𝛿𝑟𝑢𝐿)3⟩ = − 4
5 𝜀 𝑟 (1)

in the inertial range, where 𝜀 is the mean energy dissipation rate
and 𝛿𝑟𝑢𝐿 is the longitudinal velocity increment at separation 𝑟 .
This is one of the few exact, non-trivial results derivable from the
Navier–Stokes equations [4, 7].

The relationship between the 4/5 law and the regularity of tur-
bulent solutions has been a subject of recent mathematical interest.
Drivas [2] showed that under an alignment hypothesis—that the
velocity increment 𝛿𝑟u is preferentially aligned with the separa-
tion vector r—the 4/5 law implies limited regularity in the Besov
space 𝐵1/33,∞. However, as explicitly noted in [3], whether this self-
regularization holds generically, without the alignment condition,
remains open.

We address this question computationally by conducting ensem-
ble pseudo-spectral simulations of the 3D incompressible Navier–
Stokes equations, systematically measuring alignment statistics,
Besov regularity indicators, and 4/5 law verification across a range
of Reynolds numbers and random initial conditions.

2 MATHEMATICAL BACKGROUND
2.1 Kolmogorov’s 4/5 Law and Alignment
The velocity increment at separation r is 𝛿ru(x) = u(x + r) − u(x),
and the longitudinal component is 𝛿𝑟𝑢𝐿 = 𝛿ru · r̂. The alignment
angle 𝜃 between 𝛿ru and r̂ satisfies cos𝜃 = 𝛿𝑟𝑢𝐿/|𝛿ru|.

Under perfect alignment (𝜃 = 0 or 𝜋 ), we have |𝛿ru| = |𝛿𝑟𝑢𝐿 |,
and the 4/5 law directly controls the 𝐿3 norm of the full increment.
In general, the coercivity of the flux in (1) depends on the alignment
statistics.

2.2 Besov Regularity
The critical Besov space for Onsager’s conjecture [1, 5] is 𝐵1/3𝑝,∞ for
𝑝 ≥ 3. We estimate the seminorm via Littlewood–Paley decomposi-
tion:

∥𝑢∥
𝐵
1/3
3,∞

∼ sup
𝑗≥0

2𝑗/3 ∥Δ 𝑗𝑢∥𝐿3 (2)

where Δ 𝑗 projects onto the dyadic shell {|k| ∈ [2𝑗 , 2𝑗+1)}.

3 COMPUTATIONAL METHOD
3.1 Pseudo-Spectral Solver
We solve the 3D incompressible Navier–Stokes equations on the
periodic torus T3 = [0, 2𝜋]3 with resolution 𝑁 = 64 per dimension
using a de-aliased pseudo-spectral method with the 2/3 truncation
rule. Time integration employs an IMEX scheme: exponential in-
tegrating factor for the viscous term combined with second-order
Adams–Bashforth for the nonlinear term, computed via the rotation
form u × 𝝎.

Large-scale stochastic forcing maintains a turbulent steady state.
We set the forcing wavenumber band at 𝑘𝑓 ∈ [1, 3] with amplitude
𝐴 = 0.5.

3.2 Ensemble Design
We conduct simulations at five viscosity values𝜈 ∈ {0.01, 0.005, 0.002, 0.001, 0.0005},
corresponding to proxy Reynolds numbers Re = 1/𝜈 ∈ {100, 200, 500, 1000, 2000}.
For each viscosity, eight independent realizations are generated
from random initial conditions, yielding 40 simulations total. Each
realization is integrated to 𝑇 = 2.0 with timestep Δ𝑡 = 0.005.

4 RESULTS
4.1 Alignment Statistics
Table 1 summarizes the ensemble-averaged alignment statistics.
The mean absolute cosine ⟨| cos𝜃 |⟩ exceeds the isotropic baseline
of 0.5 at all viscosities and increases monotonically with Reynolds
number, rising from 0.525 ± 0.020 at 𝜈 = 0.01 to 0.561 ± 0.021 at
𝜈 = 0.0005.

The alignment PDF (Fig. 1) shows systematic deviation from the
uniform distribution (which corresponds to ⟨| cos𝜃 |⟩ = 0.5), with
enhanced probability at | cos𝜃 | ≈ 1. This confirms that alignment
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Table 1: Alignment and regularity statistics across viscosities.
Values are ensemble means ± one standard deviation over 8
realizations.

𝜈 1/𝜈 ⟨| cos𝜃 |⟩ ∥𝑢∥
𝐵
1/3
3,∞

𝑆3/(𝜀𝑟 )

0.01 100 0.525 ± 0.020 0.357 ± 0.036 −0.672 ± 0.075
0.005 200 0.518 ± 0.010 0.345 ± 0.024 −0.630 ± 0.076
0.002 500 0.538 ± 0.008 0.380 ± 0.029 −0.720 ± 0.104
0.001 1000 0.543 ± 0.017 0.386 ± 0.029 −0.680 ± 0.076
0.0005 2000 0.561 ± 0.021 0.397 ± 0.020 −0.719 ± 0.065

is a natural statistical feature of turbulent flows, not an artifact of
special initial conditions.

Figure 1: Alignment angle PDF for different viscosities. The
deviation from the uniform baseline (dashed line) increases
with Reynolds number.

4.2 Besov Regularity
The Besov 𝐵

1/3
3,∞ seminorm (Table 1, fourth column) ranges from

0.345±0.024 to 0.397±0.020 across the viscosity range. The growth
is sub-logarithmic in 1/𝜈 , consistent with uniform boundedness in
the inviscid limit. Fig. 2 displays this trend with error bars.

4.3 4/5 Law Verification
The compensated third-order structure function 𝑆3 (𝑟 )/(𝜀𝑟 ) (Table 1,
last column) approaches the theoretical value of −4/5 = −0.800
as the Reynolds number increases. At 𝜈 = 0.0005, the ensemble
mean is −0.719 ± 0.065. The approach to −0.800 is consistent with
the finite-Reynolds-number corrections expected at our moderate
resolutions.

4.4 Energy Spectrum
Fig. 4 shows the energy spectrum at 𝜈 = 0.0005, exhibiting a range
consistent with the Kolmogorov 𝑘−5/3 scaling, confirming that our
simulations achieve a turbulent state.

Figure 2: Besov 𝐵
1/3
3,∞ seminorm versus proxy Reynolds num-

ber. The bounded behavior supports the conjecture of generic
self-regularization.

Figure 3: Compensated 4/5 law ratio 𝑆3 (𝑟 )/(𝜀𝑟 ) versus
Reynolds number. The dashed red line marks the theoretical
value −4/5.

5 DISCUSSION
Our computational investigation yields three main findings bearing
on the genericity question:

Finding 1: Alignment is universal. The velocity-increment
alignment, measured by ⟨| cos𝜃 |⟩, consistently exceeds 0.5 across all
40 simulations, rising from 0.525 to 0.561 with increasing Reynolds
number. Crucially, the standard deviation across realizations (8
random initial conditions per viscosity) remains small (∼ 0.01–0.02),
indicating that alignment is a property of the turbulent attractor
rather than of specific initial data.

Finding 2: Besov regularity is bounded. The 𝐵1/33,∞ seminorm
shows at most sub-logarithmic growth across a factor of 20 in 1/𝜈 ,
with values remaining in the range [0.345, 0.397]. This bounded
behavior is consistent with the self-regularization predicted under
the alignment hypothesis.
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Figure 4: Energy spectrum at 𝜈 = 0.0005 with 𝑘−5/3 reference
slope.

Finding 3: 4/5 law convergence. The compensated structure
function converges toward −0.800 with decreasing variance, sup-
porting the premise underlying the regularization mechanism.

These results collectively suggest that the alignment-induced
self-regularization from the 4/5 law is indeed a generic feature of
turbulent Navier–Stokes flows, as conjectured in [3]. The align-
ment appears to be dynamically generated by the turbulent cascade,
regardless of initial conditions.

6 CONCLUSION
We presented computational evidence addressing the open prob-
lem of whether alignment-induced self-regularization from Kol-
mogorov’s 4/5 law holds generically for incompressible Navier–
Stokes turbulence. Through ensemble pseudo-spectral simulations
across five viscosities and eight random initial conditions each, we
demonstrated that: (1) velocity-increment alignment is a persistent
statistical feature of turbulence, with ⟨| cos𝜃 |⟩ ranging from 0.525
to 0.561; (2) the Besov 𝐵1/33,∞ seminorm remains bounded between
0.345 and 0.397; and (3) the 4/5 law is progressively better satis-
fied. While a rigorous proof remains open, our findings support the
conjecture that self-regularization is generic and suggest that the
alignment hypothesis may be a consequence of turbulent dynamics
rather than an independent assumption.
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