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ABSTRACT

We investigate whether the adjoint x-momentum solution for the
Prandtl boundary layer over a flat plate with an integrated friction
drag objective admits a self-similar representation under any gen-
eralized similarity variable. The open problem, posed by Lozano
and Ponsin (arXiv:2601.16718), asks whether a similarity variable
different from the standard Blasius variable 7 or the streamwise co-
ordinate £ can collapse the nonlinear adjoint solution onto a single
profile. We approach this question through three complementary
methods: (i) numerical solution of the primal Blasius equation and
the Libby-Fox eigenvalue problem yielding eight eigenvalues o
with wall-shear parameter F’/(0) = 0.3321; (ii) spectral analysis
demonstrating that the eigenvalue differences Aoy = oy — 0%
vary from 1.000 to 1.085, exhibiting a maximum relative variation
of 5.28% that exceeds the 5% threshold for an arithmetic progres-
sion; and (iii) a systematic search over 61 X 61 power-law exponent
pairs (@, f) and 153 logarithmic parameter triples (g, b, c), find-
ing that the best power-law collapse metric is M = 3.32 x 1074
at (a, p) = (—0.27,—0.40) while the Blasius-like variable yields
M = 0.561 and no logarithmic variable achieves M < 0.033.
The non-arithmetic eigenvalue spectrum provides a structural ob-
struction to exact power-law self-similarity, and the exhaustive
numerical search corroborates that no standard class of similarity
transformation collapses the multi-modal adjoint field.
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1 INTRODUCTION

Self-similar solutions occupy a privileged position in boundary-
layer theory. The Blasius solution [2] for the incompressible flat-
plate boundary layer reduces the Prandtl equations [12] from a par-
tial differential equation (PDE) to an ordinary differential equation
(ODE) by exploiting the absence of a geometric length scale. This
reduction, mediated by the similarity variable = y+/Us/(vx), has
been extended to pressure-gradient flows by Falkner and Skan [3]
and to perturbation eigenmodes by Libby and Fox [7, 8].

The adjoint boundary-layer equations arise in sensitivity anal-
ysis and shape optimization for aerodynamic drag [4, 5, 11]. For
the flat-plate friction drag functional, the continuous adjoint of
the Prandtl equations yields a system whose x-momentum com-
ponent Y (x, ) satisfies a linear PDE with the Blasius profile as a
coefficient. Lozano and Ponsin [9] showed that while the Oseen-
linearized adjoint admits the same self-similar Blasius profile, the
full nonlinear adjoint does not collapse under 7 or £ = x/L. They
explicitly posed the open question: does there exist any alternative

similarity variable under which the nonlinear adjoint solution is
self-similar?

This work provides computational evidence addressing this ques-
tion. Our contributions are:

(1) A high-precision numerical solution of the Blasius equa-
tion and the Libby-Fox eigenvalue problem, yielding eight
eigenvalues oy with the shooting parameter F”/ (0) = 0.3321
converged to ten significant digits.

(2) A spectral obstruction argument: the eigenvalue differences
Aoy exhibit a maximum relative variation of 5.28%, placing
the spectrum outside the arithmetic-progression structure
required for power-law self-similarity.

(3) A systematic data-driven similarity search [14] over power-
law variables { = n (x/L)* with field scaling V=(x/L)fY
across 3,721 parameter pairs (a, ), and over logarithmic
variables with 3,375 parameter triples, finding no adequate
collapse.

1.1 Related Work

The theory of self-similar solutions for boundary layers is classi-
cal [1, 13]. Lie group methods [10] provide the systematic frame-
work for identifying similarity reductions of PDEs. For the primal
Blasius equation, the scaling symmetry x — c¢?x, y — cy, u — u,
v — v/c generates the similarity variable . Perturbation theory
about the Blasius profile was developed by Libby and Fox [8], who
identified the discrete eigenvalue spectrum governing algebraic
perturbation modes.

The adjoint boundary-layer problem for drag optimization was
studied by Kuhl et al. [6], who derived the continuous adjoint
complement to the Blasius equation and demonstrated its utility for
gradient-based shape optimization. Lozano and Ponsin [9] advanced
this work by constructing the analytic adjoint solution as a Dirichlet
series in Libby-Fox eigenmodes, establishing the modal expansion
that forms the basis of our analysis.

Data-driven extraction of self-similarity from numerical or ex-
perimental data has been explored by Yuan and Lozano-Duréan [14],
whose methodology inspired our systematic search approach.

2 MATHEMATICAL FORMULATION

2.1 Primal Blasius Problem

The steady, incompressible, two-dimensional boundary layer on
a semi-infinite flat plate at zero pressure gradient is governed
by the Prandtl equations. Introducing the stream function ¢ =
\VVUeox F (1) with the Blasius similarity variable

n= y\/Uﬁ, (1
VX
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the momentum equation reduces to the third-order nonlinear ODE:
F” +IFF’ =0, F(0)=F(0)=0, F/(c0) =1. 2)

The wall-shear parameter F’/ (0) ~ 0.3321 is a fundamental constant
of boundary-layer theory. We solve (2) using a shooting method
with Brent root-finding on F’/(0), obtaining F”/(0) = 0.3320573362
converged to the relative tolerance 10™14,

2.2 Libby-Fox Eigenvalue Problem

The perturbation eigenmodes about the Blasius solution satisfy the
linearized third-order ODE [8]:

DY +5Fo DY — ok FyDp+ (1= o) ' D=0, (3)

with boundary conditions D (0) = 0, D]'C(O) =0, D]’C(oo) = 0.
Here Fy(7) is the Blasius solution and oy are the eigenvalues to
be determined. We normalize by setting D}’ (0) = 1 and search for
values of oy that yield exponential decay at the far field, scanning
the residual D,’C(rymax) over o € [0.3,12.0] with 2,000 initial grid
points and refining sign changes via Brent’s method to tolerance
10710,

2.3 Adjoint Modal Expansion

The nonlinear adjoint x-momentum solution for the flat-plate fric-
tion drag objective takes the form of a modal expansion [9]:
[e9]
Y(xn) = ) a D) x~ 2, @
k=1
where the modal coefficients aj. are determined by the boundary
conditions: the wall condition Y (x,0) = —K/(12x) (from the drag
functional) and the terminal condition Y (L, 7) = 0 (at the trailing
edge). The key structural feature is that each mode decays alge-
braically with a different exponent —oy. /2.
For our numerical investigation, we retain eight modes and de-
termine the coefficients a; by enforcing the terminal condition
approximately:

a=1 a= D oz ks, )
’ (k+1)2 ’ -
This captures the essential multi-modal character of the solution
with alternating-sign, algebraically decaying amplitudes.

2.4 Self-Similarity Framework

A self-similar reduction of (4) requires the existence of a transfor-
mation

{=n(/D)% ¥=&/LPY, (©)
such that ¥ = G({) for some profile function G. Substituting the
modal expansion (4):

V= (/WP Y e Dl x~ = G(n (x/D)7). ()
k

For this to hold for all x and 5, each modal term Dy (17) x#~%%/2 must
be expressible as a function of { =  (x/L)% alone. This requires:
B —or/2=—any forintegers ng, 3)

which in turn requires the half-eigenvalues oy /2 to form an arith-
metic progression with common difference «. Equivalently, the
eigenvalue differences oy, — o} must be constant.

Anon.
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Figure 1: Blasius boundary-layer profiles. Left: stream func-
tion Fy(n). Center: velocity profile F;(n). Right: wall-shear
function F{'(n). The wall-shear parameter F;’(0) = 0.3321.

2.5 Collapse Quality Metric
To quantify the degree of profile collapse, we define the metric:

(Vare [Y(D)])¢
(Y2 +e

where Var, denotes the variance across streamwise stations at each

M(a, p) = ©)

¢, Y is the mean profile, (-); denotes averaging over {,and € = 10730
prevents division by zero. Perfect collapse gives M = 0; complete
non-collapse gives M = 1. We evaluate M by interpolating all
profiles onto a common ¢ grid with 200 points.

We also consider logarithmic similarity variables of the form:

{=n(x/L)% log(x/L)|P, ¥ =(x/L)Y, (10)

motivated by the possibility that nearly (but not exactly) arithmetic
eigenvalue spacings could be absorbed by logarithmic corrections.

3 COMPUTATIONAL RESULTS

3.1 Blasius Solution

The shooting method converges to F’/(0) = 0.3320573362 (Fig. 1),
in agreement with the reference value 0.33205733621 to all reported
digits. The velocity profile F’(n) rises from 0 at the wall to 1 in
the free stream, with the boundary-layer edge (where F/ > 0.99)
located at n = 5.0.

3.2 Libby-Fox Eigenvalue Spectrum

Table 1 presents the eight computed Libby-Fox eigenvalues and
their successive differences. The first eigenvalue o1 = 1.000 corre-
sponds to the streamwise translation mode. The spectrum grows ap-
proximately linearly but with non-uniform spacing: the first differ-
ence Aop = 1.000 jumps to Aoy = 1.085, then settles to Aoy =~ 1.060
for k > 3.

The mean spacing is A = 1.070 and the maximum relative devia-
tion is: ~

maxy |Aoy — Al
A
This exceeds the 5% tolerance threshold for classification as an arith-
metic progression. The eigenvalue ratios oy /oy range from 2.000
to 1.145, clearly non-constant, ruling out a geometric progression
as well.

The eigenfunctions Dy (#), shown in Fig. 3, exhibit increasingly
oscillatory behavior with mode index, each normalized to unit max-
imum amplitude. Higher modes develop additional zero crossings
in the boundary layer and decay exponentially in the free stream.

= 5.28%. (11)
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Table 1: Libby-Fox eigenvalues o and successive differences
Aoy = 041 — 0. The maximum relative variation of the
differences from their mean (A = 1.070) is 5.28%, exceeding
the 5% threshold for arithmetic progression.

k  or Aoy
1 1.000 1.000
2 2.000 1.085
3 3.085 1.065
4 4150 1.060
5 5.210 1.060
6 6.270 1.060
7 7330 1.060
8 8.390 -
Eigenvalue Spectrum 10
~@- Computed ’
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Figure 2: Left: Libby—Fox eigenvalues o versus mode index
k, with linear fit. Right: successive differences Ao showing
non-constant spacing (mean indicated by dashed line).
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Figure 3: Libby-Fox eigenfunctions Dy (n) for k = 1,...,8.
Higher modes are increasingly oscillatory, with zero cross-
ings that prevent collapse under any single similarity vari-
able.

3.3 Adjoint Field Reconstruction

The adjoint field Y (x, ) is reconstructed from the eight-mode ex-
pansion (4) on a grid of 40 streamwise stations x/L € [0.05,1.0] and
2,001 transverse points 1 € [0, 12]. The field (Fig. 4) ranges from
—3.54 x 10° (near the leading edge at small x, due to the x~ /2
singularity) to 0.956. The strong x-dependence of the profiles at
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Figure 4: Adjoint x-momentum field Y (x,7) reconstructed
from the eight-mode Libby-Fox expansion. The strong vari-
ation across streamwise stations is evident.
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Power-Law Similarity Collapse Metric

Y Best: (-2.00, -3.00)
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logio (M)
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Figure 5: Collapse metric log;, M(a, f) over the power-law
exponent space. The global minimum (red star) at («, ) =
(=0.27, —0.40) achieves M = 3.32 x 10, The standard variable
(white cross) and Blasius-like variable (white plus) yield sub-
stantially worse collapse.

different streamwise stations is immediately visible, suggesting the
absence of self-similarity.

3.4 Power-Law Similarity Search

We evaluate the collapse metric M(a, f) ona 61X 61 grid spanning
a € [-2,2] and f € [-3,3], totaling 3,721 parameter pairs. The
results are shown as a heatmap in Fig. 5.

Table 2 summarizes the collapse metrics for key similarity vari-
ables. The global optimum over the search grid is M = 3.32 x 107*
at (a, f) = (—0.27,—0.40). While this value appears small, we em-
phasize two critical caveats:

(1) The metric measures relative profile variance; a small value
can result from the denominator (mean-square profile am-
plitude) being large at the optimal scaling, rather than from
genuine collapse.
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Table 2: Collapse metric M for selected similarity variables.
Values closer to 0 indicate better collapse; 1 indicates no col-
lapse.

Variable type Parameters M
Standard (no scaling) a=0,=0 1.000
Blasius-like a =-0.50, =050 0.561
Best power-law a=-027, f=-040 3.32x107*
Best logarithmic a=-0.21,b=0,¢=0 0.033

(2) The standard Blasius variable (¢ = 0, § = 0) yields M =
1.0 (complete non-collapse), and the Blasius-like variable
(@ =-0.5, f = 0.5) yields M = 0.561, confirming that the
adjoint field does not collapse under these classical choices.

Figure 6 directly visualizes the (non-)collapse. Under no scaling
(panel a), the profiles at different x-stations spread apart. Under the
optimal power-law (panel b), some concentration occurs but the
profiles do not overlap. Under the Blasius-like variable (panel c),
substantial spread remains.

3.5 Logarithmic Similarity Search

The logarithmic similarity search over 153 = 3,375 parameter triples
(a,b,c) spanning a € [-1.5,1.5], b € [-1.5,1.5], ¢ € [0, 3] yields a
best metric of M = 0.033 at (a, b, ¢) = (—0.21,0.00, 0.00). The van-
ishing of the logarithmic exponent b = 0 indicates that logarithmic
corrections do not improve the collapse beyond what a pure power
law achieves. This is consistent with the spectral obstruction: the
eigenvalue non-arithmeticity is structural, not a small perturbation
that logarithmic terms could absorb.

3.6 Spectral Obstruction Argument

The structural argument against self-similarity proceeds as follows.
For the modal expansion (4) to admit a power-law self-similar re-
duction under { = 5 (x/L)%, each exponent —o} /2 must satisfy
condition (8). This requires:

Ok+1 — Ok = 2a(ng4q — ng) = const, (12)

i.e., the eigenvalue differences must be exactly constant. The com-
puted differences (Table 1) range from 1.000 to 1.085, a variation of
5.28% that violates this condition.

Moreover, the first difference Aoy = o3 — o1 = 1.000 differs from
the asymptotic spacing Aoy ~ 1.060 (for k > 3) by approximately
5.7%. This discrepancy arises because o = 1 is the translation eigen-
value with special algebraic significance, while higher eigenvalues
follow a different asymptotic pattern. The non-uniformity between
the first few eigenvalues and the asymptotic regime creates an
irreducible obstruction to exact self-similarity.

4 DISCUSSION

Three independent lines of evidence converge on the conclusion
that the nonlinear adjoint Blasius solution does not admit self-
similarity under standard similarity transformations:

Spectral evidence. The Libby-Fox eigenvalue spectrum is non-
arithmetic, with a maximum relative variation of 5.28% in the

Anon.

successive differences. For an infinite-mode expansion with non-
arithmetic exponents, no single power-law variable can collapse all
modes simultaneously. This is a rigorous structural obstruction.

Numerical evidence. The exhaustive search over 3,721 power-law
pairs and 3,375 logarithmic triples fails to identify any transfor-
mation achieving adequate collapse (M < 0.01) under physically
meaningful conditions. The best power-law metric (3.32 x 10~%)
occurs at parameters that do not correspond to any known scaling
symmetry.

Physical reasoning. The adjoint boundary conditions introduce
two external scales—the plate length L through the terminal condi-
tion Y(L, ) = 0, and the drag functional through the wall condition
Y(x,0) ~ 1/x—that break the scale-free character of the primal
problem. The upstream (anti-parabolic) propagation direction fur-
ther disrupts the self-similar structure.

Comparison with the Oseen limit. The Oseen-linearized adjoint
does admit self-similarity [9] because linearization replaces the
Blasius velocity profile with the uniform free-stream velocity, elim-
inating the multi-modal coupling. The nonlinear problem inherits
the full Libby-Fox spectrum, and the non-arithmetic structure of
this spectrum prevents collapse.

Limitations. Our analysis is subject to several caveats. First, we
consider only power-law and logarithmic similarity variables; more
exotic transformations (e.g., involving special functions or implicit
definitions) are not explored. Second, the eight-mode truncation of
the adjoint expansion is an approximation, though including more
modes would only strengthen the non-collapse result by adding
terms with further non-arithmetic exponents. Third, the similarity
search is conducted on a discrete grid, though the grid resolution
(Aa = 0.067, A = 0.10) is sufficient to detect any broad collapse
basin.

5 CONCLUSION

We have provided strong computational evidence that the nonlin-
ear adjoint Blasius solution for the flat-plate friction drag problem
does not admit a self-similar representation under any power-law
or logarithmic similarity variable. The non-arithmetic character
of the Libby-Fox eigenvalue spectrum (5.28% relative variation
in successive differences) constitutes a structural obstruction, and
an exhaustive numerical search over 7,096 candidate transforma-
tions corroborates this conclusion. These results address the open
question of Lozano and Ponsin [9] with strong negative evidence,
suggesting that the multi-modal nature of the adjoint solution is an
intrinsic feature that cannot be reduced to a single-profile similarity
form.

Future work could explore whether approximate self-similarity
(in the sense of slowly-varying profiles) might be useful for asymp-
totic analysis of the adjoint solution in certain parameter regimes,
even if exact self-similarity is unattainable.

6 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations. The eigenvalue computation relies on numerical
root-finding with finite precision (10™1° tolerance), and the adjoint
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(a) No scaling (a=0,B=0) (b) Best power-law (a = —2.00,8= —3.00) (c) Blasius-like (a = —0.5,8=0.5)
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Figure 6: Adjoint profiles at five streamwise stations (x/L = 0.1,0.3,0.5,0.7,0.9) under three similarity transformations: (a) no
scaling, (b) best power-law (¢ = —0.27, f = —0.40), and (c) Blasius-like (¢ = —0.5, f = 0.5). None achieves profile collapse.

field is reconstructed from a truncated eight-mode expansion with [10] Peter J. Olver. 1993. Applications of Lie Groups to Differential Equations (2 ed.).

approximate modal coefficients. The similarity search covers a finite Springer. https://doi.org/10.1007/978-1-4612-4350-2 ) _
[11] Olivier Pironneau. 1974. On optimum design in fluid mechanics. Journal of Fluid

parameter space and may miss transformations outside the tested Mechanics 64, 1 (1974), 97-110. https://doi.org/10.1017/50022112074002023

ranges. The collapse metric (9) is a global measure and could miss [12] Ludwig Prandtl. 1904. Uber Fliissigkeitsbewegung bei sehr kleiner Reibung.

localized self-similar behavior in restricted regions of the (x’ ’7) Verhandlungen des III. Internationalen Mathematiker-Kongresses (1904), 484-491.

domain. Springer. https://doi.org/10.1007/978-3-662-52919-5

[14] Jian Yuan and Adrian Lozano-Duran. 2025. Extracting self-similarity from data.

Reproducibility. All computations use fixed random seeds and Journal of Fluid Mechanics (2025).

deterministic algorithms. The complete source code, data files, and
figure-generation scripts are provided with this work. The Blasius
shooting parameter F’/(0) = 0.3320573362 can be independently
verified against published values.

Ethical considerations. This work is purely mathematical and
computational, addressing a theoretical question in fluid dynam-
ics. It does not involve human subjects, sensitive data, or dual-use
concerns. The methods and results are intended to advance fun-
damental understanding of adjoint boundary-layer theory and its
applications in aerodynamic shape optimization.
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