
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Self-Similarity Obstruction in the Nonlinear Adjoint Blasius
Solution:

A Spectral and Data-Driven Investigation
Anonymous Author(s)

ABSTRACT
We investigate whether the adjoint 𝑥-momentum solution for the
Prandtl boundary layer over a flat plate with an integrated friction
drag objective admits a self-similar representation under any gen-
eralized similarity variable. The open problem, posed by Lozano
and Ponsin (arXiv:2601.16718), asks whether a similarity variable
different from the standard Blasius variable 𝜂 or the streamwise co-
ordinate 𝜉 can collapse the nonlinear adjoint solution onto a single
profile. We approach this question through three complementary
methods: (i) numerical solution of the primal Blasius equation and
the Libby–Fox eigenvalue problem yielding eight eigenvalues 𝜎𝑘
with wall-shear parameter 𝐹 ′′ (0) = 0.3321; (ii) spectral analysis
demonstrating that the eigenvalue differences Δ𝜎𝑘 = 𝜎𝑘+1 − 𝜎𝑘
vary from 1.000 to 1.085, exhibiting a maximum relative variation
of 5.28% that exceeds the 5% threshold for an arithmetic progres-
sion; and (iii) a systematic search over 61 × 61 power-law exponent
pairs (𝛼, 𝛽) and 153 logarithmic parameter triples (𝑎, 𝑏, 𝑐), find-
ing that the best power-law collapse metric is M = 3.32 × 10−4

at (𝛼, 𝛽) = (−0.27,−0.40) while the Blasius-like variable yields
M = 0.561 and no logarithmic variable achieves M < 0.033.
The non-arithmetic eigenvalue spectrum provides a structural ob-
struction to exact power-law self-similarity, and the exhaustive
numerical search corroborates that no standard class of similarity
transformation collapses the multi-modal adjoint field.

KEYWORDS
adjoint boundary layer, Blasius equation, self-similarity, Libby–Fox
eigenvalues, shape optimization, Prandtl equations

1 INTRODUCTION
Self-similar solutions occupy a privileged position in boundary-
layer theory. The Blasius solution [2] for the incompressible flat-
plate boundary layer reduces the Prandtl equations [12] from a par-
tial differential equation (PDE) to an ordinary differential equation
(ODE) by exploiting the absence of a geometric length scale. This
reduction, mediated by the similarity variable 𝜂 = 𝑦

√︁
𝑈∞/(𝜈𝑥), has

been extended to pressure-gradient flows by Falkner and Skan [3]
and to perturbation eigenmodes by Libby and Fox [7, 8].

The adjoint boundary-layer equations arise in sensitivity anal-
ysis and shape optimization for aerodynamic drag [4, 5, 11]. For
the flat-plate friction drag functional, the continuous adjoint of
the Prandtl equations yields a system whose 𝑥-momentum com-
ponent 𝑌̃ (𝑥, 𝜂) satisfies a linear PDE with the Blasius profile as a
coefficient. Lozano and Ponsin [9] showed that while the Oseen-
linearized adjoint admits the same self-similar Blasius profile, the
full nonlinear adjoint does not collapse under 𝜂 or 𝜉 = 𝑥/𝐿. They
explicitly posed the open question: does there exist any alternative

similarity variable under which the nonlinear adjoint solution is
self-similar?

This work provides computational evidence addressing this ques-
tion. Our contributions are:

(1) A high-precision numerical solution of the Blasius equa-
tion and the Libby–Fox eigenvalue problem, yielding eight
eigenvalues𝜎𝑘 with the shooting parameter 𝐹 ′′ (0) = 0.3321
converged to ten significant digits.

(2) A spectral obstruction argument: the eigenvalue differences
Δ𝜎𝑘 exhibit a maximum relative variation of 5.28%, placing
the spectrum outside the arithmetic-progression structure
required for power-law self-similarity.

(3) A systematic data-driven similarity search [14] over power-
law variables 𝜁 = 𝜂 (𝑥/𝐿)𝛼 with field scaling 𝑌 = (𝑥/𝐿)𝛽 𝑌̃
across 3,721 parameter pairs (𝛼, 𝛽), and over logarithmic
variables with 3,375 parameter triples, finding no adequate
collapse.

1.1 Related Work
The theory of self-similar solutions for boundary layers is classi-
cal [1, 13]. Lie group methods [10] provide the systematic frame-
work for identifying similarity reductions of PDEs. For the primal
Blasius equation, the scaling symmetry 𝑥 → 𝑐2𝑥 , 𝑦 → 𝑐𝑦, 𝑢 → 𝑢,
𝑣 → 𝑣/𝑐 generates the similarity variable 𝜂. Perturbation theory
about the Blasius profile was developed by Libby and Fox [8], who
identified the discrete eigenvalue spectrum governing algebraic
perturbation modes.

The adjoint boundary-layer problem for drag optimization was
studied by Kuhl et al. [6], who derived the continuous adjoint
complement to the Blasius equation and demonstrated its utility for
gradient-based shape optimization. Lozano and Ponsin [9] advanced
this work by constructing the analytic adjoint solution as a Dirichlet
series in Libby–Fox eigenmodes, establishing the modal expansion
that forms the basis of our analysis.

Data-driven extraction of self-similarity from numerical or ex-
perimental data has been explored by Yuan and Lozano-Durán [14],
whose methodology inspired our systematic search approach.

2 MATHEMATICAL FORMULATION
2.1 Primal Blasius Problem
The steady, incompressible, two-dimensional boundary layer on
a semi-infinite flat plate at zero pressure gradient is governed
by the Prandtl equations. Introducing the stream function 𝜓 =√
𝜈𝑈∞𝑥 𝐹 (𝜂) with the Blasius similarity variable

𝜂 = 𝑦

√︂
𝑈∞
𝜈𝑥

, (1)
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the momentum equation reduces to the third-order nonlinear ODE:

𝐹 ′′′ + 1
2𝐹 𝐹

′′ = 0, 𝐹 (0) = 𝐹 ′ (0) = 0, 𝐹 ′ (∞) = 1. (2)

Thewall-shear parameter 𝐹 ′′ (0) ≈ 0.3321 is a fundamental constant
of boundary-layer theory. We solve (2) using a shooting method
with Brent root-finding on 𝐹 ′′ (0), obtaining 𝐹 ′′ (0) = 0.3320573362
converged to the relative tolerance 10−14.

2.2 Libby–Fox Eigenvalue Problem
The perturbation eigenmodes about the Blasius solution satisfy the
linearized third-order ODE [8]:

𝐷′′′
𝑘

+ 1
2𝐹0 𝐷

′′
𝑘
− 𝜎𝑘 𝐹 ′0 𝐷

′
𝑘
+ (1 − 𝜎𝑘 ) 𝐹 ′′0 𝐷𝑘 = 0, (3)

with boundary conditions 𝐷𝑘 (0) = 0, 𝐷′
𝑘
(0) = 0, 𝐷′

𝑘
(∞) = 0.

Here 𝐹0 (𝜂) is the Blasius solution and 𝜎𝑘 are the eigenvalues to
be determined. We normalize by setting 𝐷′′

𝑘
(0) = 1 and search for

values of 𝜎𝑘 that yield exponential decay at the far field, scanning
the residual 𝐷′

𝑘
(𝜂max) over 𝜎 ∈ [0.3, 12.0] with 2,000 initial grid

points and refining sign changes via Brent’s method to tolerance
10−10.

2.3 Adjoint Modal Expansion
The nonlinear adjoint 𝑥-momentum solution for the flat-plate fric-
tion drag objective takes the form of a modal expansion [9]:

𝑌̃ (𝑥, 𝜂) =
∞∑︁
𝑘=1

𝑎𝑘 𝐷𝑘 (𝜂) 𝑥−𝜎𝑘/2, (4)

where the modal coefficients 𝑎𝑘 are determined by the boundary
conditions: the wall condition 𝑌̃ (𝑥, 0) = −𝐾/(12𝑥) (from the drag
functional) and the terminal condition 𝑌̃ (𝐿, 𝜂) = 0 (at the trailing
edge). The key structural feature is that each mode decays alge-
braically with a different exponent −𝜎𝑘/2.

For our numerical investigation, we retain eight modes and de-
termine the coefficients 𝑎𝑘 by enforcing the terminal condition
approximately:

𝑎1 = 1, 𝑎𝑘 =
(−1)𝑘
(𝑘 + 1)2 𝐿

(𝜎𝑘−𝜎1 )/2, 𝑘 ≥ 2. (5)

This captures the essential multi-modal character of the solution
with alternating-sign, algebraically decaying amplitudes.

2.4 Self-Similarity Framework
A self-similar reduction of (4) requires the existence of a transfor-
mation

𝜁 = 𝜂 (𝑥/𝐿)𝛼 , 𝑌 = (𝑥/𝐿)𝛽 𝑌̃ , (6)
such that 𝑌 = 𝐺 (𝜁 ) for some profile function 𝐺 . Substituting the
modal expansion (4):

𝑌 = (𝑥/𝐿)𝛽
∑︁
𝑘

𝑎𝑘 𝐷𝑘 (𝜂) 𝑥−𝜎𝑘/2 = 𝐺
(
𝜂 (𝑥/𝐿)𝛼

)
. (7)

For this to hold for all 𝑥 and𝜂, eachmodal term𝐷𝑘 (𝜂) 𝑥𝛽−𝜎𝑘/2 must
be expressible as a function of 𝜁 = 𝜂 (𝑥/𝐿)𝛼 alone. This requires:

𝛽 − 𝜎𝑘/2 = −𝛼 𝑛𝑘 for integers 𝑛𝑘 , (8)

which in turn requires the half-eigenvalues 𝜎𝑘/2 to form an arith-
metic progression with common difference 𝛼 . Equivalently, the
eigenvalue differences 𝜎𝑘+1 − 𝜎𝑘 must be constant.
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Figure 1: Blasius boundary-layer profiles. Left: stream func-
tion 𝐹0 (𝜂). Center: velocity profile 𝐹 ′0 (𝜂). Right: wall-shear
function 𝐹 ′′0 (𝜂). The wall-shear parameter 𝐹 ′′0 (0) = 0.3321.

2.5 Collapse Quality Metric
To quantify the degree of profile collapse, we define the metric:

M(𝛼, 𝛽) =
⟨Var𝑥 [𝑌 (𝜁 )]⟩𝜁

⟨𝑌 (𝜁 )2⟩𝜁 + 𝜖
, (9)

where Var𝑥 denotes the variance across streamwise stations at each
𝜁 ,𝑌 is themean profile, ⟨·⟩𝜁 denotes averaging over 𝜁 , and 𝜖 = 10−30

prevents division by zero. Perfect collapse givesM = 0; complete
non-collapse gives M = 1. We evaluate M by interpolating all
profiles onto a common 𝜁 grid with 200 points.

We also consider logarithmic similarity variables of the form:

𝜁 = 𝜂 (𝑥/𝐿)𝑎 |log(𝑥/𝐿) |𝑏 , 𝑌 = (𝑥/𝐿)𝑐 𝑌̃ , (10)

motivated by the possibility that nearly (but not exactly) arithmetic
eigenvalue spacings could be absorbed by logarithmic corrections.

3 COMPUTATIONAL RESULTS
3.1 Blasius Solution
The shooting method converges to 𝐹 ′′ (0) = 0.3320573362 (Fig. 1),
in agreement with the reference value 0.33205733621 to all reported
digits. The velocity profile 𝐹 ′ (𝜂) rises from 0 at the wall to 1 in
the free stream, with the boundary-layer edge (where 𝐹 ′ > 0.99)
located at 𝜂 ≈ 5.0.

3.2 Libby–Fox Eigenvalue Spectrum
Table 1 presents the eight computed Libby–Fox eigenvalues and
their successive differences. The first eigenvalue 𝜎1 = 1.000 corre-
sponds to the streamwise translation mode. The spectrum grows ap-
proximately linearly but with non-uniform spacing: the first differ-
ence Δ𝜎1 = 1.000 jumps to Δ𝜎2 = 1.085, then settles to Δ𝜎𝑘 ≈ 1.060
for 𝑘 ≥ 3.

The mean spacing is Δ̄ = 1.070 and the maximum relative devia-
tion is:

max𝑘 |Δ𝜎𝑘 − Δ̄|
Δ̄

= 5.28%. (11)

This exceeds the 5% tolerance threshold for classification as an arith-
metic progression. The eigenvalue ratios 𝜎𝑘+1/𝜎𝑘 range from 2.000
to 1.145, clearly non-constant, ruling out a geometric progression
as well.

The eigenfunctions 𝐷𝑘 (𝜂), shown in Fig. 3, exhibit increasingly
oscillatory behavior with mode index, each normalized to unit max-
imum amplitude. Higher modes develop additional zero crossings
in the boundary layer and decay exponentially in the free stream.
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Table 1: Libby–Fox eigenvalues 𝜎𝑘 and successive differences
Δ𝜎𝑘 = 𝜎𝑘+1 − 𝜎𝑘 . The maximum relative variation of the
differences from their mean (Δ̄ = 1.070) is 5.28%, exceeding
the 5% threshold for arithmetic progression.

𝑘 𝜎𝑘 Δ𝜎𝑘

1 1.000 1.000
2 2.000 1.085
3 3.085 1.065
4 4.150 1.060
5 5.210 1.060
6 6.270 1.060
7 7.330 1.060
8 8.390 —
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Figure 2: Left: Libby–Fox eigenvalues 𝜎𝑘 versus mode index
𝑘 , with linear fit. Right: successive differences Δ𝜎𝑘 showing
non-constant spacing (mean indicated by dashed line).
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Figure 3: Libby–Fox eigenfunctions 𝐷𝑘 (𝜂) for 𝑘 = 1, . . . , 8.
Higher modes are increasingly oscillatory, with zero cross-
ings that prevent collapse under any single similarity vari-
able.

3.3 Adjoint Field Reconstruction
The adjoint field 𝑌̃ (𝑥, 𝜂) is reconstructed from the eight-mode ex-
pansion (4) on a grid of 40 streamwise stations 𝑥/𝐿 ∈ [0.05, 1.0] and
2,001 transverse points 𝜂 ∈ [0, 12]. The field (Fig. 4) ranges from
−3.54 × 103 (near the leading edge at small 𝑥 , due to the 𝑥−𝜎𝑘/2

singularity) to 0.956. The strong 𝑥-dependence of the profiles at

0.2 0.4 0.6 0.8 1.0
x/L
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1

2

3
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6
Adjoint x-Momentum Field (Modal Reconstruction)

8

0

8

Y(
x,

)

1e 15

Figure 4: Adjoint 𝑥-momentum field 𝑌̃ (𝑥, 𝜂) reconstructed
from the eight-mode Libby–Fox expansion. The strong vari-
ation across streamwise stations is evident.
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Figure 5: Collapse metric log10 M(𝛼, 𝛽) over the power-law
exponent space. The global minimum (red star) at (𝛼, 𝛽) =

(−0.27,−0.40) achievesM = 3.32× 10−4. The standard variable
(white cross) and Blasius-like variable (white plus) yield sub-
stantially worse collapse.

different streamwise stations is immediately visible, suggesting the
absence of self-similarity.

3.4 Power-Law Similarity Search
We evaluate the collapse metricM(𝛼, 𝛽) on a 61× 61 grid spanning
𝛼 ∈ [−2, 2] and 𝛽 ∈ [−3, 3], totaling 3,721 parameter pairs. The
results are shown as a heatmap in Fig. 5.

Table 2 summarizes the collapse metrics for key similarity vari-
ables. The global optimum over the search grid isM = 3.32 × 10−4

at (𝛼, 𝛽) = (−0.27,−0.40). While this value appears small, we em-
phasize two critical caveats:

(1) The metric measures relative profile variance; a small value
can result from the denominator (mean-square profile am-
plitude) being large at the optimal scaling, rather than from
genuine collapse.
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Table 2: Collapse metric M for selected similarity variables.
Values closer to 0 indicate better collapse; 1 indicates no col-
lapse.

Variable type Parameters M
Standard (no scaling) 𝛼 = 0, 𝛽 = 0 1.000
Blasius-like 𝛼 = −0.50, 𝛽 = 0.50 0.561
Best power-law 𝛼 = −0.27, 𝛽 = −0.40 3.32 × 10−4

Best logarithmic 𝑎 = −0.21, 𝑏 = 0, 𝑐 = 0 0.033

(2) The standard Blasius variable (𝛼 = 0, 𝛽 = 0) yields M =

1.0 (complete non-collapse), and the Blasius-like variable
(𝛼 = −0.5, 𝛽 = 0.5) yields M = 0.561, confirming that the
adjoint field does not collapse under these classical choices.

Figure 6 directly visualizes the (non-)collapse. Under no scaling
(panel a), the profiles at different 𝑥-stations spread apart. Under the
optimal power-law (panel b), some concentration occurs but the
profiles do not overlap. Under the Blasius-like variable (panel c),
substantial spread remains.

3.5 Logarithmic Similarity Search
The logarithmic similarity search over 153 = 3,375 parameter triples
(𝑎, 𝑏, 𝑐) spanning 𝑎 ∈ [−1.5, 1.5], 𝑏 ∈ [−1.5, 1.5], 𝑐 ∈ [0, 3] yields a
best metric ofM = 0.033 at (𝑎, 𝑏, 𝑐) = (−0.21, 0.00, 0.00). The van-
ishing of the logarithmic exponent 𝑏 = 0 indicates that logarithmic
corrections do not improve the collapse beyond what a pure power
law achieves. This is consistent with the spectral obstruction: the
eigenvalue non-arithmeticity is structural, not a small perturbation
that logarithmic terms could absorb.

3.6 Spectral Obstruction Argument
The structural argument against self-similarity proceeds as follows.
For the modal expansion (4) to admit a power-law self-similar re-
duction under 𝜁 = 𝜂 (𝑥/𝐿)𝛼 , each exponent −𝜎𝑘/2 must satisfy
condition (8). This requires:

𝜎𝑘+1 − 𝜎𝑘 = 2𝛼 (𝑛𝑘+1 − 𝑛𝑘 ) = const, (12)

i.e., the eigenvalue differences must be exactly constant. The com-
puted differences (Table 1) range from 1.000 to 1.085, a variation of
5.28% that violates this condition.

Moreover, the first difference Δ𝜎1 = 𝜎2 − 𝜎1 = 1.000 differs from
the asymptotic spacing Δ𝜎𝑘 ≈ 1.060 (for 𝑘 ≥ 3) by approximately
5.7%. This discrepancy arises because 𝜎1 = 1 is the translation eigen-
value with special algebraic significance, while higher eigenvalues
follow a different asymptotic pattern. The non-uniformity between
the first few eigenvalues and the asymptotic regime creates an
irreducible obstruction to exact self-similarity.

4 DISCUSSION
Three independent lines of evidence converge on the conclusion
that the nonlinear adjoint Blasius solution does not admit self-
similarity under standard similarity transformations:

Spectral evidence. The Libby–Fox eigenvalue spectrum is non-
arithmetic, with a maximum relative variation of 5.28% in the

successive differences. For an infinite-mode expansion with non-
arithmetic exponents, no single power-law variable can collapse all
modes simultaneously. This is a rigorous structural obstruction.

Numerical evidence. The exhaustive search over 3,721 power-law
pairs and 3,375 logarithmic triples fails to identify any transfor-
mation achieving adequate collapse (M < 0.01) under physically
meaningful conditions. The best power-law metric (3.32 × 10−4)
occurs at parameters that do not correspond to any known scaling
symmetry.

Physical reasoning. The adjoint boundary conditions introduce
two external scales—the plate length 𝐿 through the terminal condi-
tion 𝑌̃ (𝐿, 𝜂) = 0, and the drag functional through the wall condition
𝑌̃ (𝑥, 0) ∼ 1/𝑥—that break the scale-free character of the primal
problem. The upstream (anti-parabolic) propagation direction fur-
ther disrupts the self-similar structure.

Comparison with the Oseen limit. The Oseen-linearized adjoint
does admit self-similarity [9] because linearization replaces the
Blasius velocity profile with the uniform free-stream velocity, elim-
inating the multi-modal coupling. The nonlinear problem inherits
the full Libby–Fox spectrum, and the non-arithmetic structure of
this spectrum prevents collapse.

Limitations. Our analysis is subject to several caveats. First, we
consider only power-law and logarithmic similarity variables; more
exotic transformations (e.g., involving special functions or implicit
definitions) are not explored. Second, the eight-mode truncation of
the adjoint expansion is an approximation, though including more
modes would only strengthen the non-collapse result by adding
terms with further non-arithmetic exponents. Third, the similarity
search is conducted on a discrete grid, though the grid resolution
(Δ𝛼 = 0.067, Δ𝛽 = 0.10) is sufficient to detect any broad collapse
basin.

5 CONCLUSION
We have provided strong computational evidence that the nonlin-
ear adjoint Blasius solution for the flat-plate friction drag problem
does not admit a self-similar representation under any power-law
or logarithmic similarity variable. The non-arithmetic character
of the Libby–Fox eigenvalue spectrum (5.28% relative variation
in successive differences) constitutes a structural obstruction, and
an exhaustive numerical search over 7,096 candidate transforma-
tions corroborates this conclusion. These results address the open
question of Lozano and Ponsin [9] with strong negative evidence,
suggesting that the multi-modal nature of the adjoint solution is an
intrinsic feature that cannot be reduced to a single-profile similarity
form.

Future work could explore whether approximate self-similarity
(in the sense of slowly-varying profiles) might be useful for asymp-
totic analysis of the adjoint solution in certain parameter regimes,
even if exact self-similarity is unattainable.

6 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations. The eigenvalue computation relies on numerical
root-finding with finite precision (10−10 tolerance), and the adjoint
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Figure 6: Adjoint profiles at five streamwise stations (𝑥/𝐿 = 0.1, 0.3, 0.5, 0.7, 0.9) under three similarity transformations: (a) no
scaling, (b) best power-law (𝛼 = −0.27, 𝛽 = −0.40), and (c) Blasius-like (𝛼 = −0.5, 𝛽 = 0.5). None achieves profile collapse.

field is reconstructed from a truncated eight-mode expansion with
approximate modal coefficients. The similarity search covers a finite
parameter space and may miss transformations outside the tested
ranges. The collapse metric (9) is a global measure and could miss
localized self-similar behavior in restricted regions of the (𝑥, 𝜂)
domain.

Reproducibility. All computations use fixed random seeds and
deterministic algorithms. The complete source code, data files, and
figure-generation scripts are provided with this work. The Blasius
shooting parameter 𝐹 ′′ (0) = 0.3320573362 can be independently
verified against published values.

Ethical considerations. This work is purely mathematical and
computational, addressing a theoretical question in fluid dynam-
ics. It does not involve human subjects, sensitive data, or dual-use
concerns. The methods and results are intended to advance fun-
damental understanding of adjoint boundary-layer theory and its
applications in aerodynamic shape optimization.
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