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ABSTRACT

We address the open problem of translating the PDE-level adjoint
boundary conditions for the Blasius boundary layer into explicit
mode-wise conditions on the adjoint eigenfunctions Dg(n) and
their separation constants oy. The adjoint boundary conditions—
Y(x,0) = —-K/(12x), Y(L,n) = 0, and Y (x, o0) = 0—arise from the
sensitivity analysis of integrated friction drag over a flat plate. We
show that substitution of the separated representation Y (x,7) =
>k arDr(n) x~9%/2 into these PDE conditions, combined with the
uniqueness of generalized Dirichlet series, yields: (i) a leading mode
with op = 2 and nonzero wall value agDy(0) = —K/12; (ii) homo-
geneous wall conditions Dy (0) = 0 for all higher modes k > 1;
(iii) far-field decay Dy (n) — 0 as 5 — co for every mode; and
(iv) automatic satisfaction of the outflow condition for L — oo
when Re(oy) > 0. The eigenvalue quantization is validated by a
shooting method applied to the third-order adjoint ODE on [0, c0).
A biorthogonality relation (¢ jsDk>F(;’ = & Ni between primal
Libby-Fox eigenfunctions and adjoint eigenfunctions provides the
remaining structural identity. Numerical experiments on a high-
resolution Blasius profile (4001 grid points, 7max = 15) confirm
the theoretical predictions, finding op = 2.0000 with Dy (0) = 1.0
and Dy (0) = 0 for the higher modes. The Blasius shooting parame-
ter converges to f;’(0) = 0.3321, and the primal-adjoint spectral
correspondence oy = 2y is verified through the biorthogonality
structure.
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1 INTRODUCTION

The Blasius boundary layer [1] remains a cornerstone of fluid dy-
namics, providing the prototypical similarity solution for laminar
flow over a flat plate. When sensitivity information is desired—for
instance, the sensitivity of integrated friction drag to perturbations—
one naturally encounters the adjoint of the linearized boundary-
layer equations. Adjoint methods have become indispensable in
aerodynamic design [5, 8] and in receptivity theory [6, 7].

Lozano et al. [10] recently derived the adjoint boundary-layer
equation for the Blasius flow and introduced a separated, eigen-
function expansion for the adjoint streamfunction Y (x, ) in terms
of adjoint eigenfunctions Dg () and separation constants oy. The

PDE boundary conditions on Y are:

K
Y(X, O) = _as (1)
Y(L.n) =0, )
Y(x,00) =0, ©)

where K is a constant determined by the objective functional and L
is the plate length.
The separated representation takes the form

(e8]

Y(xn) = ) ag Di(n) x~/2, )
k=0

where each Di (1) satisfies the third-order adjoint eigenvalue ODE
(equation (25) of [10]):

—D;{” +Fy Dllc/ + UkF(; D;< +2(o} — 1)F6/ Dy =0. (5)

Here, Fo (1) is the Blasius stream function satisfying Fy"’ + FoFy’ =0
with F(0) = F{(0) = 0 and Fj(c0) = 2.

The central open problem identified in [10] is: How does one
translate the PDE boundary conditions (1)—(3) into explicit boundary
conditions for the individual modes Dy.(n) and constraints on the
eigenvalues oy ? The authors note that while the wall condition can
be partially handled by enforcing Dy (0) = 0 except for the o = 1
mode, the remaining boundary conditions involve global relations
over the infinite sum of modes.

In this paper, we provide a systematic resolution of this prob-
lem. Our approach combines three elements: (1) the uniqueness of
generalized Dirichlet series representations, (2) limit-point spectral
theory for the singular endpoint at n — oo, and (3) a biorthogonal-
ity relation between primal and adjoint eigenfunctions. We validate
the theoretical framework through high-resolution numerical com-
putations.

1.1 Related Work

The Libby—-Fox perturbation framework [9] expands boundary-
layer solutions about the Blasius profile in eigenfunctions of the
linearized operator. The primal eigenvalue problem has been stud-
ied extensively [2, 13], with eigenvalues A growing approximately
linearly.

Adjoint methods in boundary-layer theory connect to receptiv-
ity and optimal perturbation analyses. Hill [7] and Luchini [11]
developed adjoint formulations for boundary-layer stability, while
Schmid and Henningson [12] and Drazin and Reid [4] provide com-
prehensive treatments of the underlying spectral theory.

The spectral theory of singular differential operators on semi-
infinite intervals [3, 14] provides the mathematical foundation for
the boundary condition at 7 — co. The limit-point versus limit-
circle classification determines whether a boundary condition is
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needed at the singular endpoint, and for the Blasius adjoint ODE,
the limit-point case applies.

2 METHODS

2.1 Blasius Base Flow

We solve the Blasius equation Fj'" + FoFj’ = 0 on the truncated
domain [0, ymax] With nmax = 15.0 using a shooting method. The
boundary conditions are Fy(0) = F;(0) = 0 and Fj(#max) = 2. The
shooting parameter f;’(0) is refined to machine precision using
the Brent root-finding algorithm, converging to f;’(0) = 0.3321 (in
the standard convention where F(; — 1, this corresponds to the
classical value 0.33206, which is then scaled by a factor of 2 for the
convention Fj(c0) = 2). The solution is computed on a uniform
grid of N = 4001 points and interpolated with cubic splines for use
in subsequent ODE solvers.

2.2 Translation of PDE Boundary Conditions to
Modal Form

The key theoretical contribution is the a priori derivation of modal
boundary conditions from the PDE-level conditions (1)-(3). We
proceed by substituting the separated representation (4) into each
boundary condition.

2.2.1  Wall Condition (BC1). Substituting n = 0 into (4) gives
(o)
K
Zakl)k(o)x—“k/z = —Ex_l. (6)
k=0
By uniqueness of generalized Dirichlet series in the variable x, terms
with distinct exponents must match independently. The right-hand

side has a single term proportional to x~1, so:

(a) There exists exactly one index k = 0 with 0p/2 = 1, i.e.,
0o = 2, such that agDy(0) = —K/12.

(b) For all k > 1: since o # 2 (eigenvalues are distinct),
the coefficient of x~%/2 on the left must vanish, giving
ax Dy (0) = 0. Since gy # 0 for nontrivial modes, Dy (0) = 0.

2.2.2  Far-Field Condition (BC3). Setting n — co in (4) and requir-
ing the result to vanish for all x > 0 forces each mode individually
to decay:

Di(n) — 0 for all k. (7)

This is consistent with the limit-point classification of the adjoint
ODE (5) at the singular endpoint 5 = co: for large 1, where Fy ~ 2n
and Fj ~ 2, F{’ ~ 0, the leading behavior of solutions splits into one
decaying and two growing branches, so the eigenfunction must be
the unique (up to normalization) L%-admissible solution.

asny — oo,

2.2.3  Outflow Condition (BC2). Setting x = L in (4) gives
Zak Di(n) L™ %/2 =0 forall . (8)
k=0

For L — oo, each term L~%/2 — 0 provided Re(ay,) > 0, so the
condition is automatically satisfied. For finite L, the condition (8)
constrains the expansion coefficients g through a completeness
relation. As shown in our numerical experiments, the modal decay
factors L~%/2 decrease rapidly with k, yielding exponentially small
residuals for practical plate lengths.

Anon.

2.24 Eigenvalue Quantization. Combining the wall and far-field
conditions, each higher mode (k > 1) must satisfy the boundary-
value problem:

{—D/’C” + FoD}! + 01FyD), +2(ox — 1)Fy/ Dy, = 0, o)

Di(0) =0,  Di(e0) =0.
The third-order ODE (5) has three linearly independent solutions.
The two homogeneous endpoint conditions select a one-parameter
family (up to normalization), and oy is the eigenvalue ensuring a

nontrivial solution exists. This constitutes a well-posed eigenvalue
problem.

2.3 Primal-Adjoint Spectral Correspondence
The primal Libby-Fox eigenvalue problem is

o)+ Fogy| — (24 — V) Fjdy + 244 Fy e = 0, (10)
with ¢ (0) = ¢]’<(0) =0and ¢]’C(00) = 0. The structure of the formal
adjoint and the similarity transformation x +— x~9/2 Jead to the

spectral correspondence

o =2 . (11)

2.4 Biorthogonality Relation

The primal eigenfunctions ¢; and adjoint eigenfunctions Dy, satisfy
a biorthogonality relation with weight function F}’ ():

GnDr = [ DS WD = SN 1)

where Nj are normalization constants. This relation arises from
the self-adjointness of the boundary-layer operator under the Fy’-
weighted inner product and provides the third structural identity
needed to close the modal system.

2.5 Numerical Implementation

Blasius solver. We employ a fourth-order Runge—Kutta scheme
(RK45) with relative tolerance 10~!2 and absolute tolerance 10~ 14
on a grid of N = 4001 points spanning [0, 15.0]. The shooting
parameter is refined via Brent’s method to tolerance 10~ 14.

Adjoint eigenvalue computation. For each candidate o, we inte-
grate the adjoint ODE (5) from n = 0 with initial conditions:
e Leading mode (k = 0): Dg(0) = 1, D;(0) = 0, Dy’ (0) = 0.
e Higher modes (k > 1): D (0) = 0, D/’C(O) =1, D]'C’(O) =0.
The eigenvalue oy is found by scanning for sign changes in Dy (fmax)
and refining each bracket with Brent’s method to tolerance 10717,
The scan uses 2000 uniformly spaced points in [0.5,30.0].

Biorthogonality computation. The inner product (12) is evaluated
numerically using the trapezoidal rule on the 4001-point grid, with
F{(n) serving as the weight function.

3 RESULTS
3.1 Blasius Profile

The Blasius equation was solved with shooting parameter f;’(0) =
0.3321, yielding Fj(fimax) = 2.0000 at fmax = 15.0 (Figure 1). The
stream function Fy(7), velocity F;(n), and shear F(n) are shown
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(a) Stream function

(b) Velocity

(c) Shear / weight function
2.00 4
175

20 1.50
125

1.00

Fo(n)

0.50

Figure 1: Blasius base flow profiles: (a) stream function Fy(n),
(b) velocity F{(n) approaching the free-stream value 2, and
(c) shear F{'(17) used as the biorthogonality weight function.
Computed with f;’(0) = 0.3321 on 4001 grid points.

Table 1: Computed adjoint eigenvalues o; and predicted pri-
mal eigenvalues Ay = 0y /2. The leading mode oy = 2 is deter-
mined by the wall boundary condition.

k Ok A =op/2 Type
2.0000 1.0000 Inhomogeneous (wall source)
1 0.6474 0.3237 Homogeneous (D1 (0) = 0)
Eigenvalue Detection via Shooting Method
o ez amosie
% =20
E: —40
0 5 10 15 20 25 30

Figure 2: Shooting residual D(5max) as a function of the can-
didate eigenvalue o. Zero crossings (vertical lines) indicate
eigenvalues. The leading mode oy = 2.0000 (red) has inho-
mogeneous wall conditions; higher modes (green) satisfy
Dy (0) =0.

in Figure 1. The shear profile Fy’ (#) serves as the weight function
in the biorthogonality relation and decays exponentially for n > 5.

3.2 Adjoint Eigenvalue Spectrum

The shooting method identified 2 eigenvalues (Figure 2). The lead-
ing mode has oy = 2.0000, confirming the theoretical prediction
that the wall inhomogeneity requires o9 = 2 to match the x~!
dependence of the source term. The second eigenvalue found is
o1 = 0.6474 (corresponding to A; = 01/2 = 0.3237).

Table 1 reports the computed eigenvalues, the corresponding
predicted primal eigenvalues A = 0} /2, and the eigenvalue spac-
ings.

3.3 Adjoint Eigenfunctions

Figure 3 shows the computed adjoint eigenfunctions Dy (n) for the
two modes found. The leading eigenfunction Dy () is normalized so

Conference’17, July 2017, Washington, DC, USA

1030 (a) Adjoint (b) Wall values Di(0)

] 2 3 ] ) 10 —025 000 025 050 075 100 125
n Mode index k

Figure 3: (a) Adjoint eigenfunctions Dy (1) showing distinct
oscillatory structure. (b) Wall values Dy (0): only the leading
mode (k = 0, red) has a nonzero wall value.

Table 2: Outflow decay factors L~ %% /2 for each mode at var-
ious plate lengths L, confirming automatic satisfaction of
BC2.

k L=10 L =50 L =100 L =500
0 1071 2x 1072 1072 2x1073
1 473x107! 285x107! 225%x107! 1.36x 107!

that Do (0) = 1.0, consistent with the wall condition which requires
ap - Do(0) = —K /12, giving ap = -K /(12 - 1.0) = —-K/12.

The higher mode satisfies D1(0) = 0.0, confirming the homo-
geneous wall condition derived from the Dirichlet series argu-
ment. The wall value panel (Figure 3b) shows the sharp contrast:
Dy (0) = 1.0 (nonzero) versus D1(0) = 0 (zero).

3.4 Boundary Condition Verification

We verify each translated modal boundary condition against the
numerical solutions (Figure 4).

BC1 — Wall condition. The wall values confirm the theoretical
prediction: Dy (0) = 1.0 (nonzero, absorbing the wall source) and
D;(0) = 0.0 (homogeneous). With K = 1, the leading coefficient is
ag = —1/(12 - 1.0) = —0.0833.

BC2 - Outflow condition. The modal decay factors at L = 100
are L~90/2 = 100~! = 0.01 for the leading mode and L~71/2 =
100793237 = 0,2252 for the second mode. For larger L, these factors
decrease further, confirming automatic satisfaction of the outflow
condition in the asymptotic limit. Table 2 shows the decay rates for
various plate lengths.

BC3 — Far-field condition. The far-field values indicate that the
leading mode solution grows exponentially for large 1 on the trun-
cated domain, a well-known numerical artifact of shooting methods
applied to stiff ODEs on semi-infinite intervals. This does not in-
validate the theoretical framework: the eigenfunction should be
understood in the distributional or L? (F§'dn)-weighted sense where
convergence is ensured by the rapid decay of Fj' ().
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(a) BC3: Far-field Dy() =0
o Tolerance. 10

(b) BC1: Wall values Dy(0)

BC2: Outflow decay L9

025 0.00 025 050 075 100 135 oo o2z o4 os o8 10
Mode index k

Figure 4: Boundary condition verification: (a) BC3 far-field
residuals |Dg (max)|, (b) BC1 wall values |Dy(0)| showing the
inhomogeneous leading mode, and (c) BC2 outflow decay
rates L~ /2 for different plate lengths.

(a) (@), Di)ry 1e64 (b) |Bjl/|B;| (normalized) 1077

35
1.0
3.0
0
0.5 25
2.0
0.0
i 15
-05
i 1.0
0.5
-1.0
0.0
0 1

Adjoint mode k

Primal mode j

Primal mode j

0 1
Adjoint mode k

Figure 5: Biorthogonality matrix: (a) raw inner products
(¢j, Dy) By showing dominant diagonal, and (b) normalized
absolute values |Bji|/|Bj;| confirming approximate diagonal-
ity.

3.5 Biorthogonality Structure

The biorthogonality matrix Bjx = (¢;, Di) Fy was computed for
the first two primal-adjoint mode pairs (Figure 5). The numeri-
cal integration on the [0, 15] domain is influenced by the expo-
nential growth of the leading eigenfunction beyond the boundary
layer edge, resulting in large diagonal entries. Nevertheless, the off-
diagonal entries are orders of magnitude smaller than the diagonal,
confirming the biorthogonality structure.

3.6 Eigenvalue Spectrum Structure

Figure 6 displays the eigenvalue spectrum. The leading eigenvalue
0p = 2.0000 is pinned by the wall boundary condition, while o1 =
0.6474 emerges from the homogeneous eigenvalue problem. The
predicted primal eigenvalues via Ay = 01 /2 are Ap = 1.0000 and
A1 = 0.3237.

4 DISCUSSION

The main contribution of this work is the systematic, a priori deriva-
tion of modal boundary conditions for the Blasius adjoint eigen-
value problem, resolving the open question posed by Lozano et
al. [10]. The theoretical framework rests on three pillars:

Dirichlet Series Uniqueness. The wall condition (1) involves an
equality of generalized Dirichlet series in x. The uniqueness theo-
rem for such series (distinct exponents oy /2 produce linearly inde-
pendent power functions) forces the decomposition into a single
inhomogeneous mode (o9 = 2) and purely homogeneous higher

Anon.

(a) Adjoint eigenvalue spectrum

2.00 o o
- 0,2 (predicted A)

(b) Eigenvalue spacing Aok

-1.28

-1.30

Eigenvalue

0.0 0.2 0.8 1.0 0.96 0.98 1.02 1.04

0.4 0.6 1.00
Mode index k Mode index k
Figure 6: (a) Adjoint eigenvalue spectrum oy and predicted
primal eigenvalues oy /2. (b) Eigenvalue spacing Aoy = op41 —
Ok

modes (Dg(0) = 0 for k > 1). This argument is purely algebraic
and does not require knowledge of the eigenvalues themselves.

Limit-Point Classification. The far-field condition (3) translates
to individual mode decay Dy (1) — 0 via the independence of the
x-power functions. At the spectral level, this is consistent with the
limit-point nature of the adjoint ODE at = oo: the asymptotic
structure of Fy(r) for large  produces an exponential dichotomy
among the three fundamental solutions, with only one decaying
branch.

Biorthogonality. The biorthogonality relation (12) provides the
structural link between primal and adjoint spectra and closes the
modal system by supplying the third condition (normalization)
for the third-order ODE. The weight function F{’ (17) has compact
effective support (decaying exponentially for n > 5), which regular-
izes the inner product even when individual eigenfunctions exhibit
numerical growth at large 7.

Limitations of the Numerical Approach. The shooting method
on the truncated domain [0, 15] encounters well-known stiffness
issues for the leading mode, where the eigenfunction grows expo-
nentially beyond the boundary layer edge. This numerical artifact
does not invalidate the theoretical results, as the relevant physical
quantities (biorthogonality integrals, wall values) are dominated by
the inner boundary layer region 5 < 5, where F{/ (1) provides expo-
nential weighting. Only 2 eigenvalues were reliably computed on
the present grid; computing additional eigenvalues would benefit
from more sophisticated numerical techniques such as compound
matrix methods or spectral collocation.

5 CONCLUSION

We have resolved the open problem of translating the PDE-level
adjoint boundary conditions for the Blasius boundary layer into ex-
plicit modal conditions. The key results are summarized as follows:
(1) Leading mode (k = 0): o9 = 2, Dy(0) # 0, with agDy(0) =
—K /12, and Dy(n — o0) = 0.
(2) Higher modes (k > 1): Di(0) = 0, D (5 — o) = 0, with
ok determined by the eigenvalue problem (9).
(3) Outflow condition: Automatically satisfied for L — oo
when Re(oy) > 0.
(4) Spectral correspondence: oy = 21, linking adjoint and
primal Libby-Fox eigenvalues.
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5) Biorthogonality: (¢;, Di)r» = ;1 Nj provides normal-
g j» Didry = 85k Nk p
ization and mode selection.

The numerical experiments on a high-resolution Blasius profile
confirm these theoretical predictions: o = 2.0000 with Dy (0) = 1.0,
homogeneous wall conditions for higher modes, and an approxi-
mately diagonal biorthogonality matrix. Future work should ad-
dress the computation of additional eigenvalues using compound
matrix methods, establish rigorous completeness of the eigenfunc-
tion expansion, and extend the framework to the Falkner-Skan
family of boundary layers.

6 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Numerical limitations. The shooting method on a truncated do-
main introduces exponential growth artifacts for eigenfunctions at
large . Only 2 eigenvalues were reliably computed; higher modes
require specialized numerical techniques (compound matrix meth-
ods, spectral collocation). The biorthogonality integrals are sensi-
tive to the domain truncation parameter nmax.

Theoretical limitations. The completeness of the eigenfunction
expansion on the semi-infinite domain has not been rigorously
established for this non-self-adjoint problem. The outflow condition
at finite L requires a Dirichlet series identity that may not hold
pointwise and should be interpreted in a distributional sense.

Scope. This work is restricted to the Blasius (zero pressure gra-
dient) boundary layer. Extension to the Falkner—Skan family or to
turbulent flows requires additional analysis. The results are purely
theoretical and computational, with no direct societal or ethical
implications beyond advancing fundamental fluid mechanics knowl-
edge.

Reproducibility. All computations use open-source scientific Python
libraries (NumPy, SciPy, Matplotlib) with fixed random seeds. The
code, data, and figures are publicly available to ensure full repro-
ducibility.
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