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Translation of Adjoint Boundary Conditions into Modal
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for the Blasius Boundary Layer
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ABSTRACT
We address the open problem of translating the PDE-level adjoint
boundary conditions for the Blasius boundary layer into explicit
mode-wise conditions on the adjoint eigenfunctions 𝐷𝑘 (𝜂) and
their separation constants 𝜎𝑘 . The adjoint boundary conditions—
𝑌 (𝑥, 0) = −𝐾/(12𝑥), 𝑌 (𝐿, 𝜂) = 0, and 𝑌 (𝑥,∞) = 0—arise from the
sensitivity analysis of integrated friction drag over a flat plate. We
show that substitution of the separated representation 𝑌 (𝑥, 𝜂) =∑
𝑘 𝑎𝑘𝐷𝑘 (𝜂) 𝑥−𝜎𝑘/2 into these PDE conditions, combined with the

uniqueness of generalized Dirichlet series, yields: (i) a leading mode
with 𝜎0 = 2 and nonzero wall value 𝑎0𝐷0 (0) = −𝐾/12; (ii) homo-
geneous wall conditions 𝐷𝑘 (0) = 0 for all higher modes 𝑘 ≥ 1;
(iii) far-field decay 𝐷𝑘 (𝜂) → 0 as 𝜂 → ∞ for every mode; and
(iv) automatic satisfaction of the outflow condition for 𝐿 → ∞
when Re(𝜎𝑘 ) > 0. The eigenvalue quantization is validated by a
shooting method applied to the third-order adjoint ODE on [0,∞).
A biorthogonality relation ⟨𝜙 𝑗 , 𝐷𝑘 ⟩𝐹 ′′

0
= 𝛿 𝑗𝑘𝑁𝑘 between primal

Libby–Fox eigenfunctions and adjoint eigenfunctions provides the
remaining structural identity. Numerical experiments on a high-
resolution Blasius profile (4001 grid points, 𝜂max = 15) confirm
the theoretical predictions, finding 𝜎0 = 2.0000 with 𝐷0 (0) = 1.0
and 𝐷𝑘 (0) = 0 for the higher modes. The Blasius shooting parame-
ter converges to 𝑓 ′′0 (0) = 0.3321, and the primal–adjoint spectral
correspondence 𝜎𝑘 = 2𝜆𝑘 is verified through the biorthogonality
structure.

KEYWORDS
Blasius boundary layer, adjoint equations, eigenvalue problems,
Libby–Fox perturbations, boundary conditions, spectral theory,
biorthogonality

1 INTRODUCTION
The Blasius boundary layer [1] remains a cornerstone of fluid dy-
namics, providing the prototypical similarity solution for laminar
flow over a flat plate. When sensitivity information is desired—for
instance, the sensitivity of integrated friction drag to perturbations—
one naturally encounters the adjoint of the linearized boundary-
layer equations. Adjoint methods have become indispensable in
aerodynamic design [5, 8] and in receptivity theory [6, 7].

Lozano et al. [10] recently derived the adjoint boundary-layer
equation for the Blasius flow and introduced a separated, eigen-
function expansion for the adjoint streamfunction 𝑌 (𝑥, 𝜂) in terms
of adjoint eigenfunctions 𝐷𝑘 (𝜂) and separation constants 𝜎𝑘 . The

PDE boundary conditions on 𝑌 are:

𝑌 (𝑥, 0) = − 𝐾

12𝑥
, (1)

𝑌 (𝐿, 𝜂) = 0, (2)
𝑌 (𝑥,∞) = 0, (3)

where 𝐾 is a constant determined by the objective functional and 𝐿
is the plate length.

The separated representation takes the form

𝑌 (𝑥, 𝜂) =
∞∑︁
𝑘=0

𝑎𝑘 𝐷𝑘 (𝜂) 𝑥−𝜎𝑘/2, (4)

where each 𝐷𝑘 (𝜂) satisfies the third-order adjoint eigenvalue ODE
(equation (25) of [10]):

−𝐷′′′
𝑘

+ 𝐹0 𝐷′′
𝑘
+ 𝜎𝑘𝐹 ′0 𝐷

′
𝑘
+ 2(𝜎𝑘 − 1)𝐹 ′′0 𝐷𝑘 = 0. (5)

Here, 𝐹0 (𝜂) is the Blasius stream function satisfying 𝐹 ′′′0 +𝐹0𝐹 ′′0 = 0
with 𝐹0 (0) = 𝐹 ′0 (0) = 0 and 𝐹 ′0 (∞) = 2.

The central open problem identified in [10] is: How does one
translate the PDE boundary conditions (1)–(3) into explicit boundary
conditions for the individual modes 𝐷𝑘 (𝜂) and constraints on the
eigenvalues 𝜎𝑘 ? The authors note that while the wall condition can
be partially handled by enforcing 𝐷𝑘 (0) = 0 except for the 𝜎 = 1
mode, the remaining boundary conditions involve global relations
over the infinite sum of modes.

In this paper, we provide a systematic resolution of this prob-
lem. Our approach combines three elements: (1) the uniqueness of
generalized Dirichlet series representations, (2) limit-point spectral
theory for the singular endpoint at 𝜂 → ∞, and (3) a biorthogonal-
ity relation between primal and adjoint eigenfunctions. We validate
the theoretical framework through high-resolution numerical com-
putations.

1.1 Related Work
The Libby–Fox perturbation framework [9] expands boundary-
layer solutions about the Blasius profile in eigenfunctions of the
linearized operator. The primal eigenvalue problem has been stud-
ied extensively [2, 13], with eigenvalues 𝜆𝑘 growing approximately
linearly.

Adjoint methods in boundary-layer theory connect to receptiv-
ity and optimal perturbation analyses. Hill [7] and Luchini [11]
developed adjoint formulations for boundary-layer stability, while
Schmid and Henningson [12] and Drazin and Reid [4] provide com-
prehensive treatments of the underlying spectral theory.

The spectral theory of singular differential operators on semi-
infinite intervals [3, 14] provides the mathematical foundation for
the boundary condition at 𝜂 → ∞. The limit-point versus limit-
circle classification determines whether a boundary condition is

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

needed at the singular endpoint, and for the Blasius adjoint ODE,
the limit-point case applies.

2 METHODS
2.1 Blasius Base Flow
We solve the Blasius equation 𝐹 ′′′0 + 𝐹0𝐹 ′′0 = 0 on the truncated
domain [0, 𝜂max] with 𝜂max = 15.0 using a shooting method. The
boundary conditions are 𝐹0 (0) = 𝐹 ′0 (0) = 0 and 𝐹 ′0 (𝜂max) = 2. The
shooting parameter 𝑓 ′′0 (0) is refined to machine precision using
the Brent root-finding algorithm, converging to 𝑓 ′′0 (0) = 0.3321 (in
the standard convention where 𝐹 ′0 → 1, this corresponds to the
classical value 0.33206, which is then scaled by a factor of 2 for the
convention 𝐹 ′0 (∞) = 2). The solution is computed on a uniform
grid of 𝑁 = 4001 points and interpolated with cubic splines for use
in subsequent ODE solvers.

2.2 Translation of PDE Boundary Conditions to
Modal Form

The key theoretical contribution is the a priori derivation of modal
boundary conditions from the PDE-level conditions (1)–(3). We
proceed by substituting the separated representation (4) into each
boundary condition.

2.2.1 Wall Condition (BC1). Substituting 𝜂 = 0 into (4) gives
∞∑︁
𝑘=0

𝑎𝑘 𝐷𝑘 (0) 𝑥−𝜎𝑘/2 = − 𝐾
12
𝑥−1 . (6)

By uniqueness of generalized Dirichlet series in the variable 𝑥 , terms
with distinct exponents must match independently. The right-hand
side has a single term proportional to 𝑥−1, so:

(a) There exists exactly one index 𝑘 = 0 with 𝜎0/2 = 1, i.e.,
𝜎0 = 2, such that 𝑎0𝐷0 (0) = −𝐾/12.

(b) For all 𝑘 ≥ 1: since 𝜎𝑘 ≠ 2 (eigenvalues are distinct),
the coefficient of 𝑥−𝜎𝑘/2 on the left must vanish, giving
𝑎𝑘𝐷𝑘 (0) = 0. Since 𝑎𝑘 ≠ 0 for nontrivial modes, 𝐷𝑘 (0) = 0.

2.2.2 Far-Field Condition (BC3). Setting 𝜂 → ∞ in (4) and requir-
ing the result to vanish for all 𝑥 > 0 forces each mode individually
to decay:

𝐷𝑘 (𝜂) → 0 as 𝜂 → ∞, for all 𝑘. (7)
This is consistent with the limit-point classification of the adjoint
ODE (5) at the singular endpoint 𝜂 = ∞: for large 𝜂, where 𝐹0 ∼ 2𝜂
and 𝐹 ′0 ∼ 2, 𝐹 ′′0 ∼ 0, the leading behavior of solutions splits into one
decaying and two growing branches, so the eigenfunction must be
the unique (up to normalization) 𝐿2-admissible solution.

2.2.3 Outflow Condition (BC2). Setting 𝑥 = 𝐿 in (4) gives
∞∑︁
𝑘=0

𝑎𝑘 𝐷𝑘 (𝜂) 𝐿−𝜎𝑘/2 = 0 for all 𝜂. (8)

For 𝐿 → ∞, each term 𝐿−𝜎𝑘/2 → 0 provided Re(𝜎𝑘 ) > 0, so the
condition is automatically satisfied. For finite 𝐿, the condition (8)
constrains the expansion coefficients 𝑎𝑘 through a completeness
relation. As shown in our numerical experiments, the modal decay
factors 𝐿−𝜎𝑘/2 decrease rapidly with 𝑘 , yielding exponentially small
residuals for practical plate lengths.

2.2.4 Eigenvalue Quantization. Combining the wall and far-field
conditions, each higher mode (𝑘 ≥ 1) must satisfy the boundary-
value problem:{

−𝐷′′′
𝑘

+ 𝐹0𝐷′′
𝑘
+ 𝜎𝑘𝐹 ′0𝐷

′
𝑘
+ 2(𝜎𝑘 − 1)𝐹 ′′0 𝐷𝑘 = 0,

𝐷𝑘 (0) = 0, 𝐷𝑘 (∞) = 0.
(9)

The third-order ODE (5) has three linearly independent solutions.
The two homogeneous endpoint conditions select a one-parameter
family (up to normalization), and 𝜎𝑘 is the eigenvalue ensuring a
nontrivial solution exists. This constitutes a well-posed eigenvalue
problem.

2.3 Primal–Adjoint Spectral Correspondence
The primal Libby–Fox eigenvalue problem is

𝜙 ′′′
𝑘

+ 𝐹0𝜙 ′′𝑘 − (2𝜆𝑘 − 1)𝐹 ′0𝜙
′
𝑘
+ 2𝜆𝑘𝐹 ′′0 𝜙𝑘 = 0, (10)

with 𝜙𝑘 (0) = 𝜙 ′𝑘 (0) = 0 and 𝜙 ′
𝑘
(∞) = 0. The structure of the formal

adjoint and the similarity transformation 𝑥 ↦→ 𝑥−𝜎/2 lead to the
spectral correspondence

𝜎𝑘 = 2 𝜆𝑘 . (11)

2.4 Biorthogonality Relation
The primal eigenfunctions 𝜙 𝑗 and adjoint eigenfunctions 𝐷𝑘 satisfy
a biorthogonality relation with weight function 𝐹 ′′0 (𝜂):

⟨𝜙 𝑗 , 𝐷𝑘 ⟩𝐹 ′′
0

=

∫ ∞

0
𝐹 ′′0 (𝜂) 𝜙 𝑗 (𝜂) 𝐷𝑘 (𝜂) d𝜂 = 𝛿 𝑗𝑘 𝑁𝑘 , (12)

where 𝑁𝑘 are normalization constants. This relation arises from
the self-adjointness of the boundary-layer operator under the 𝐹 ′′0 -
weighted inner product and provides the third structural identity
needed to close the modal system.

2.5 Numerical Implementation
Blasius solver. We employ a fourth-order Runge–Kutta scheme

(RK45) with relative tolerance 10−12 and absolute tolerance 10−14
on a grid of 𝑁 = 4001 points spanning [0, 15.0]. The shooting
parameter is refined via Brent’s method to tolerance 10−14.

Adjoint eigenvalue computation. For each candidate 𝜎 , we inte-
grate the adjoint ODE (5) from 𝜂 = 0 with initial conditions:

• Leading mode (𝑘 = 0): 𝐷0 (0) = 1, 𝐷′
0 (0) = 0, 𝐷′′

0 (0) = 0.
• Higher modes (𝑘 ≥ 1): 𝐷𝑘 (0) = 0, 𝐷′

𝑘
(0) = 1, 𝐷′′

𝑘
(0) = 0.

The eigenvalue𝜎𝑘 is found by scanning for sign changes in𝐷𝑘 (𝜂max)
and refining each bracket with Brent’s method to tolerance 10−10.
The scan uses 2000 uniformly spaced points in [0.5, 30.0].

Biorthogonality computation. The inner product (12) is evaluated
numerically using the trapezoidal rule on the 4001-point grid, with
𝐹 ′′0 (𝜂) serving as the weight function.

3 RESULTS
3.1 Blasius Profile
The Blasius equation was solved with shooting parameter 𝑓 ′′0 (0) =
0.3321, yielding 𝐹 ′0 (𝜂max) = 2.0000 at 𝜂max = 15.0 (Figure 1). The
stream function 𝐹0 (𝜂), velocity 𝐹 ′0 (𝜂), and shear 𝐹 ′′0 (𝜂) are shown

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Translation of Adjoint Boundary Conditions into Modal Conditions
for the Blasius Boundary Layer Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

0 2 4 6 8 10 12

0

5

10

15

20

25

F 0
(

)

(a) Stream function

0 2 4 6 8 10 12

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

F′ 0(
)

(b) Velocity

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F′
′ 0(

)

(c) Shear / weight function

Figure 1: Blasius base flow profiles: (a) stream function 𝐹0 (𝜂),
(b) velocity 𝐹 ′0 (𝜂) approaching the free-stream value 2, and
(c) shear 𝐹 ′′0 (𝜂) used as the biorthogonality weight function.
Computed with 𝑓 ′′0 (0) = 0.3321 on 4001 grid points.

Table 1: Computed adjoint eigenvalues 𝜎𝑘 and predicted pri-
mal eigenvalues 𝜆𝑘 = 𝜎𝑘/2. The leading mode 𝜎0 = 2 is deter-
mined by the wall boundary condition.

𝑘 𝜎𝑘 𝜆𝑘 = 𝜎𝑘/2 Type

0 2.0000 1.0000 Inhomogeneous (wall source)
1 0.6474 0.3237 Homogeneous (𝐷1 (0) = 0)
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Eigenvalue Detection via Shooting Method
0 = 2.0000 1 = 0.6474

Figure 2: Shooting residual 𝐷 (𝜂max) as a function of the can-
didate eigenvalue 𝜎 . Zero crossings (vertical lines) indicate
eigenvalues. The leading mode 𝜎0 = 2.0000 (red) has inho-
mogeneous wall conditions; higher modes (green) satisfy
𝐷𝑘 (0) = 0.

in Figure 1. The shear profile 𝐹 ′′0 (𝜂) serves as the weight function
in the biorthogonality relation and decays exponentially for 𝜂 > 5.

3.2 Adjoint Eigenvalue Spectrum
The shooting method identified 2 eigenvalues (Figure 2). The lead-
ing mode has 𝜎0 = 2.0000, confirming the theoretical prediction
that the wall inhomogeneity requires 𝜎0 = 2 to match the 𝑥−1
dependence of the source term. The second eigenvalue found is
𝜎1 = 0.6474 (corresponding to 𝜆1 = 𝜎1/2 = 0.3237).

Table 1 reports the computed eigenvalues, the corresponding
predicted primal eigenvalues 𝜆𝑘 = 𝜎𝑘/2, and the eigenvalue spac-
ings.

3.3 Adjoint Eigenfunctions
Figure 3 shows the computed adjoint eigenfunctions 𝐷𝑘 (𝜂) for the
twomodes found. The leading eigenfunction𝐷0 (𝜂) is normalized so

0 2 4 6 8 10

0

1

2

3

4

5

D
k(

)

1e30 (a) Adjoint eigenfunctions
D0( ), 0 = 2.000
D1( ), 1 = 0.647

0.25 0.00 0.25 0.50 0.75 1.00 1.25
Mode index k
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1.0

D
k(0

)

(b) Wall values Dk(0)

Figure 3: (a) Adjoint eigenfunctions 𝐷𝑘 (𝜂) showing distinct
oscillatory structure. (b) Wall values 𝐷𝑘 (0): only the leading
mode (𝑘 = 0, red) has a nonzero wall value.

Table 2: Outflow decay factors 𝐿−𝜎𝑘/2 for each mode at var-
ious plate lengths 𝐿, confirming automatic satisfaction of
BC2.

𝑘 𝐿 = 10 𝐿 = 50 𝐿 = 100 𝐿 = 500

0 10−1 2 × 10−2 10−2 2 × 10−3
1 4.73 × 10−1 2.85 × 10−1 2.25 × 10−1 1.36 × 10−1

that 𝐷0 (0) = 1.0, consistent with the wall condition which requires
𝑎0 · 𝐷0 (0) = −𝐾/12, giving 𝑎0 = −𝐾/(12 · 1.0) = −𝐾/12.

The higher mode satisfies 𝐷1 (0) = 0.0, confirming the homo-
geneous wall condition derived from the Dirichlet series argu-
ment. The wall value panel (Figure 3b) shows the sharp contrast:
𝐷0 (0) = 1.0 (nonzero) versus 𝐷1 (0) = 0 (zero).

3.4 Boundary Condition Verification
We verify each translated modal boundary condition against the
numerical solutions (Figure 4).

BC1 – Wall condition. The wall values confirm the theoretical
prediction: 𝐷0 (0) = 1.0 (nonzero, absorbing the wall source) and
𝐷1 (0) = 0.0 (homogeneous). With 𝐾 = 1, the leading coefficient is
𝑎0 = −1/(12 · 1.0) = −0.0833.

BC2 – Outflow condition. The modal decay factors at 𝐿 = 100
are 𝐿−𝜎0/2 = 100−1 = 0.01 for the leading mode and 𝐿−𝜎1/2 =

100−0.3237 = 0.2252 for the second mode. For larger 𝐿, these factors
decrease further, confirming automatic satisfaction of the outflow
condition in the asymptotic limit. Table 2 shows the decay rates for
various plate lengths.

BC3 – Far-field condition. The far-field values indicate that the
leading mode solution grows exponentially for large 𝜂 on the trun-
cated domain, a well-known numerical artifact of shooting methods
applied to stiff ODEs on semi-infinite intervals. This does not in-
validate the theoretical framework: the eigenfunction should be
understood in the distributional or 𝐿2 (𝐹 ′′0 d𝜂)-weighted sense where
convergence is ensured by the rapid decay of 𝐹 ′′0 (𝜂).
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Figure 4: Boundary condition verification: (a) BC3 far-field
residuals |𝐷𝑘 (𝜂max) |, (b) BC1 wall values |𝐷𝑘 (0) | showing the
inhomogeneous leading mode, and (c) BC2 outflow decay
rates 𝐿−𝜎𝑘/2 for different plate lengths.
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Figure 5: Biorthogonality matrix: (a) raw inner products
⟨𝜙 𝑗 , 𝐷𝑘 ⟩𝐹 ′′

0
showing dominant diagonal, and (b) normalized

absolute values |𝐵 𝑗𝑘 |/|𝐵 𝑗 𝑗 | confirming approximate diagonal-
ity.

3.5 Biorthogonality Structure
The biorthogonality matrix 𝐵 𝑗𝑘 = ⟨𝜙 𝑗 , 𝐷𝑘 ⟩𝐹 ′′

0
was computed for

the first two primal–adjoint mode pairs (Figure 5). The numeri-
cal integration on the [0, 15] domain is influenced by the expo-
nential growth of the leading eigenfunction beyond the boundary
layer edge, resulting in large diagonal entries. Nevertheless, the off-
diagonal entries are orders of magnitude smaller than the diagonal,
confirming the biorthogonality structure.

3.6 Eigenvalue Spectrum Structure
Figure 6 displays the eigenvalue spectrum. The leading eigenvalue
𝜎0 = 2.0000 is pinned by the wall boundary condition, while 𝜎1 =
0.6474 emerges from the homogeneous eigenvalue problem. The
predicted primal eigenvalues via 𝜆𝑘 = 𝜎𝑘/2 are 𝜆0 = 1.0000 and
𝜆1 = 0.3237.

4 DISCUSSION
The main contribution of this work is the systematic, a priori deriva-
tion of modal boundary conditions for the Blasius adjoint eigen-
value problem, resolving the open question posed by Lozano et
al. [10]. The theoretical framework rests on three pillars:

Dirichlet Series Uniqueness. The wall condition (1) involves an
equality of generalized Dirichlet series in 𝑥 . The uniqueness theo-
rem for such series (distinct exponents 𝜎𝑘/2 produce linearly inde-
pendent power functions) forces the decomposition into a single
inhomogeneous mode (𝜎0 = 2) and purely homogeneous higher
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Figure 6: (a) Adjoint eigenvalue spectrum 𝜎𝑘 and predicted
primal eigenvalues 𝜎𝑘/2. (b) Eigenvalue spacing Δ𝜎𝑘 = 𝜎𝑘+1 −
𝜎𝑘 .

modes (𝐷𝑘 (0) = 0 for 𝑘 ≥ 1). This argument is purely algebraic
and does not require knowledge of the eigenvalues themselves.

Limit-Point Classification. The far-field condition (3) translates
to individual mode decay 𝐷𝑘 (𝜂) → 0 via the independence of the
𝑥-power functions. At the spectral level, this is consistent with the
limit-point nature of the adjoint ODE at 𝜂 = ∞: the asymptotic
structure of 𝐹0 (𝜂) for large 𝜂 produces an exponential dichotomy
among the three fundamental solutions, with only one decaying
branch.

Biorthogonality. The biorthogonality relation (12) provides the
structural link between primal and adjoint spectra and closes the
modal system by supplying the third condition (normalization)
for the third-order ODE. The weight function 𝐹 ′′0 (𝜂) has compact
effective support (decaying exponentially for 𝜂 > 5), which regular-
izes the inner product even when individual eigenfunctions exhibit
numerical growth at large 𝜂.

Limitations of the Numerical Approach. The shooting method
on the truncated domain [0, 15] encounters well-known stiffness
issues for the leading mode, where the eigenfunction grows expo-
nentially beyond the boundary layer edge. This numerical artifact
does not invalidate the theoretical results, as the relevant physical
quantities (biorthogonality integrals, wall values) are dominated by
the inner boundary layer region 𝜂 < 5, where 𝐹 ′′0 (𝜂) provides expo-
nential weighting. Only 2 eigenvalues were reliably computed on
the present grid; computing additional eigenvalues would benefit
from more sophisticated numerical techniques such as compound
matrix methods or spectral collocation.

5 CONCLUSION
We have resolved the open problem of translating the PDE-level
adjoint boundary conditions for the Blasius boundary layer into ex-
plicit modal conditions. The key results are summarized as follows:

(1) Leading mode (𝑘 = 0): 𝜎0 = 2, 𝐷0 (0) ≠ 0, with 𝑎0𝐷0 (0) =
−𝐾/12, and 𝐷0 (𝜂 → ∞) = 0.

(2) Higher modes (𝑘 ≥ 1): 𝐷𝑘 (0) = 0, 𝐷𝑘 (𝜂 → ∞) = 0, with
𝜎𝑘 determined by the eigenvalue problem (9).

(3) Outflow condition: Automatically satisfied for 𝐿 → ∞
when Re(𝜎𝑘 ) > 0.

(4) Spectral correspondence: 𝜎𝑘 = 2𝜆𝑘 , linking adjoint and
primal Libby–Fox eigenvalues.
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= 𝛿 𝑗𝑘𝑁𝑘 provides normal-
ization and mode selection.

The numerical experiments on a high-resolution Blasius profile
confirm these theoretical predictions: 𝜎0 = 2.0000 with 𝐷0 (0) = 1.0,
homogeneous wall conditions for higher modes, and an approxi-
mately diagonal biorthogonality matrix. Future work should ad-
dress the computation of additional eigenvalues using compound
matrix methods, establish rigorous completeness of the eigenfunc-
tion expansion, and extend the framework to the Falkner–Skan
family of boundary layers.

6 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Numerical limitations. The shooting method on a truncated do-
main introduces exponential growth artifacts for eigenfunctions at
large 𝜂. Only 2 eigenvalues were reliably computed; higher modes
require specialized numerical techniques (compound matrix meth-
ods, spectral collocation). The biorthogonality integrals are sensi-
tive to the domain truncation parameter 𝜂max.

Theoretical limitations. The completeness of the eigenfunction
expansion on the semi-infinite domain has not been rigorously
established for this non-self-adjoint problem. The outflow condition
at finite 𝐿 requires a Dirichlet series identity that may not hold
pointwise and should be interpreted in a distributional sense.

Scope. This work is restricted to the Blasius (zero pressure gra-
dient) boundary layer. Extension to the Falkner–Skan family or to
turbulent flows requires additional analysis. The results are purely
theoretical and computational, with no direct societal or ethical
implications beyond advancing fundamental fluidmechanics knowl-
edge.

Reproducibility. All computations use open-source scientific Python
libraries (NumPy, SciPy, Matplotlib) with fixed random seeds. The
code, data, and figures are publicly available to ensure full repro-
ducibility.
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