Blasius Boundary Layer -- Adjoint Eigenvalue Problem
Determine how to translate the adjoint boundary conditions for the Blasius boundary layer into explicit boundary conditions for the adjoint eigenfunctions Dk(η) and separation constants σk.
Separated representation: Y(x,η) = Σk ak Dk(η) x-σk/2
Wall condition: D_0(0) = 1.0 (nonzero, absorbs wall source), D_k(0) = 0 for higher modes.
| k | σk | λk = σk/2 | Type |
|---|---|---|---|
| 0 | 2.0000 | 1.0000 | Inhomogeneous |
| 1 | 0.6474 | 0.3237 | Homogeneous |
| k | Dk(0) | Expected | Status |
|---|---|---|---|
| 0 | 1.0000 | nonzero | PASS |
| 1 | 0.0000 | = 0 | PASS |
Bjk = inner product of primal and adjoint eigenfunctions weighted by F0'' -- should be approximately diagonal.
| Domain | [0, 15.0] |
| Grid points | 4001 |
| ODE solver | RK45 |
| Relative tolerance | 10-12 |
| Absolute tolerance | 10-14 |
| Eigenvalue scan points | 2000 |
| Scan range σ | [0.5, 30.0] |
| Root tolerance | 10-10 |
| k | σk | L-σk/2 | Assessment |
|---|---|---|---|
| 0 | 2.0000 | 0.0100 | Strong decay |
| 1 | 0.6474 | 0.2252 | Moderate decay |