Translation of Adjoint Boundary Conditions into Modal Conditions

Blasius Boundary Layer -- Adjoint Eigenvalue Problem

Category: Fluid Dynamics (physics.flu-dyn) Reference: Lozano et al., arXiv:2601.16718 (2026) Date: Jan 23, 2026

Key Results

2.0000
Leading eigenvalue σ0
0.6474
Second eigenvalue σ1
0.3321
Blasius f0''(0)
2
Modes computed
4001
Grid points
15.0
ηmax

Problem Statement

Determine how to translate the adjoint boundary conditions for the Blasius boundary layer into explicit boundary conditions for the adjoint eigenfunctions Dk(η) and separation constants σk.

Y(x, 0) = -K / (12x)
Y(L, η) = 0
Y(x, ∞) = 0

Separated representation: Y(x,η) = Σk ak Dk(η) xk/2

Main Result

Theorem: Modal Boundary Conditions
  1. Leading mode (k=0): σ0 = 2, D0(0) ≠ 0, a0 D0(0) = -K/12
  2. Higher modes (k ≥ 1): Dk(0) = 0, Dk(η → ∞) = 0
  3. Outflow: Automatic for L → ∞ when Re(σk) > 0
  4. Spectral correspondence: σk = 2λk
  5. Biorthogonality: ⟨φj, DkF0'' = δjk Nk

Eigenvalue Spectrum

Primal--Adjoint Correspondence

Boundary Condition Verification

Wall condition: D_0(0) = 1.0 (nonzero, absorbs wall source), D_k(0) = 0 for higher modes.

Outflow Decay Rates vs. Plate Length

Eigenvalue Table

k σk λk = σk/2 Type
0 2.0000 1.0000 Inhomogeneous
1 0.6474 0.3237 Homogeneous

Wall Values Dk(0)

k Dk(0) Expected Status
0 1.0000 nonzero PASS
1 0.0000 = 0 PASS

Biorthogonality Matrix

Bjk = inner product of primal and adjoint eigenfunctions weighted by F0'' -- should be approximately diagonal.

Numerical Parameters

Domain[0, 15.0]
Grid points4001
ODE solverRK45
Relative tolerance10-12
Absolute tolerance10-14
Eigenvalue scan points2000
Scan range σ[0.5, 30.0]
Root tolerance10-10

Outflow Decay at L = 100

k σk Lk/2 Assessment
0 2.0000 0.0100 Strong decay
1 0.6474 0.2252 Moderate decay