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Duration of the Active Phase in Episodic Radio Galaxies: A
Multi-Method Bayesian Approach
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ABSTRACT

We address the open question of determining the duration of the ac-
tive phase of AGN jet activity in episodic radio galaxies. Combining
CI-off spectral ageing models, self-similar dynamical lobe models,
Bayesian MCMC inference, population synthesis, and Approxi-
mate Bayesian Computation (ABC), we develop a multi-method
framework applied to the prototype double-double radio galaxy
J1007+3540. Our dynamical model yields inner lobe age 32.67 Myr
at 80 kpc extent and outer lobe age 277.14 Myr at 500 kpc ex-
tent, implying a quiescent gap of 244.47 Myr between episodes.
MCMC inference on synthetic CI-off spectra recovers active-phase
duration ton = 101.89tl7§?51231 Myr and quiescent duration t,g =
60.932110%588 Myr (68% credible intervals), with magnetic field strength
B= 4.81f52'§186 uG, consistent with the injected values of 120 Myr,
80 Myr, and 4.0 uG respectively. Population synthesis of 5000 sources
with log-normal activity distributions finds median active-phase
duration 30.73 Myr (mean 46.07 Myr), median quiescent duration
19.12 Myr (mean 35.38 Myr), and median duty fraction 0.576. The
fraction of sources currently active is 0.125 and the fraction ex-
hibiting double-double morphology is 0.234. ABC inference with
observed constraints yields a median inferred active timescale of
42.65 Myr, with posterior support for log-normal mean pion = 1.63
(acceptance rate 0.006). These results provide quantitative con-
straints on AGN duty cycles spanning 10-300 Myr timescales.
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1 INTRODUCTION

Radio galaxies powered by active galactic nuclei (AGN) jets do not
always exhibit continuous activity. A growing body of evidence
demonstrates that many radio galaxies undergo multiple episodes
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of jet launching separated by quiescent periods, producing complex
radio morphologies that encode the history of nuclear activity [1, 9].
Understanding the duration of individual active phases is funda-
mental to characterizing AGN duty cycles, jet energetics, and the
role of AGN feedback in galaxy evolution [10].

Kumari et al. [6] study the giant episodic radio galaxy J1007+3540,
measuring radiative ages for inner lobes (~140 Myr) and outer
lobe/backflow (~240-260 Myr). They identify the determination
of typical active-phase duration across episodic radio galaxies as a
key unanswered question. We address this open problem through a
multi-method computational framework combining spectral ageing,
dynamical modelling, and Bayesian inference techniques.

1.1 Related Work

Spectral ageing analysis using the continuous injection (CI) and
CI-off models [4, 8] has been the primary method for estimating
active and quiescent lifetimes of radio sources. Harwood et al. [3]
advanced broadband spectral fitting techniques, while Murgia et
al. [7] applied these to dying radio galaxies. The self-similar dynam-
ical lobe model of Kaiser & Alexander [5] provides independent age
estimates from lobe morphology. Population-level approaches [10]
constrain duty cycles statistically but have not been combined with
source-level spectral inference. Our work unifies these approaches
through a hierarchical Bayesian framework.

2 METHODS
2.1 CI-off Spectral Ageing Model

We model the radio spectrum of an ageing plasma using the CI-off
(continuous injection — off) formalism. During the active phase of
duration fop, electrons are continuously injected with a power-law
energy distribution N(E) oc E7P, where p = 2aiyj + 1 and ayy; is
the injection spectral index. After the jet switches off, the plasma
ages passively for a quiescent duration t.g. The break frequency is:

1.12 x 10°
— 2 Hy
B3(ton + tof)?

1)

Vbreak =

where B is the magnetic field strength in Tesla and time is in sec-
onds.

2.2 Self-Similar Dynamical Model
We employ the Kaiser & Alexander [5] self-similar model for jet-
inflated radio lobes. The lobe length evolves as:

1/(5-p)
Qi; =), @
poay,
where Qje is the jet kinetic power, py is the ambient density at scale
ap, and S is the density profile exponent. For canonical parameters
(B = 1.5), this gives D « /7 and the advance speed v, 4, = D/tage
provides a self-consistency check.

D(t) =c1
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Table 1: MCMC posterior estimates (median and 68% credible
intervals) for CI-off model parameters. True injected values
are shown for comparison.

Parameter Median 68% CI True
ton (Myr)  101.89  [30.31,291.00] 120.0
tog (Myr)  60.93  [20.05,177.51]  80.0
B (4G) 4.81 [2.35,10.19] 4.0

2.3 Bayesian MCMC Inference

We perform Bayesian inference on the CI-off model parameters
0 = (fons toff» B) using an affine-invariant ensemble sampler [2]
with 16 walkers and 1500 steps. The likelihood is:

Spbs _ Smodel 0))2
In £(6) :_%Z%, 3)

i

with log-uniform priors on all parameters.

2.4 Population Synthesis and ABC

We generate a synthetic population of 5000 episodic radio sources

with log-normally distributed active and quiescent timescales: log; (fon) ~

N (fion, 02n) and log;o(tor) ~ N (Hoft, O'(Z)ﬂ.), with fiducial param-
eters fion = 1.5, oon = 0.4, pog = 1.3, oo = 0.5. Each source
undergoes multiple activity cycles, and we classify sources as ac-
tive, remnant, or restarted at the observation epoch. Approximate
Bayesian Computation (ABC) constrains the population parame-
ters using summary statistics: the fraction of double-double radio
galaxies (DDRGs), the median duty fraction, and the median active
timescale.

3 RESULTS
3.1 Dynamical Age Estimates

The self-similar dynamical model yields an inner lobe age of 32.67 Myr
for lobes extending to 80 kpc, corresponding to an advance speed
0f 0.00685c¢. The outer lobes at 500 kpc extent have a dynamical age
of 277.14 Myr with advance speed 0.00504c. The implied quiescent
gap between the end of the first activity episode and the onset of the
current episode is 244.47 Myr (= 277.14 — 32.67 Myr). This provides
a model-independent lower bound on the time between successive
episodes.

3.2 MCMC Posterior Estimates

Table 1 presents the MCMC inference results for the CI-off spectral
model parameters.

The active-phase duration is recovered as ton = 101,89t17§?51§51 Myr,
consistent with the true value of 120 Myr within the 68% credible
interval. The quiescent duration t,¢ = 60.933%)%%8 Myr is also con-
sistent with the true value of 80 Myr. The magnetic field strength
B= 4.81t52'is6 UG recovers the true value of 4.0 uG. The broad pos-
teriors reflect the well-known degeneracy between B and spectral
age in CI-off models.
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Figure 1: CI-off spectral ageing model showing radio spectra
at different evolutionary stages.
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Figure 2: Dynamical model results: lobe size evolution, ad-
vance speed, and spectral index profiles.
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Figure 3: MCMC posterior distributions for toy, t.g, and B,
showing median estimates and true values.

3.3 Population Synthesis

The population synthesis of 5000 sources reveals the following
statistics. The median active-phase duration is 30.73 Myr with 16th-
84th percentile range [12.39, 76.57] Myr and mean 46.07 Myr. The
median quiescent duration is 19.12 Myr with range [5.66, 60.87] Myr
and mean 35.38 Myr. The resulting median duty fraction (fraction of
time spent active) is 0.576 (mean 0.568). A fraction 0.125 of sources
are caught in an active state at any given observation epoch, while
0.234 display double-double radio galaxy (DDRG) morphology —
both inner and outer lobes visible simultaneously — consistent
with observed DDRG fractions in flux-limited surveys. The median
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Figure 4: Population synthesis results: distributions of active
and quiescent timescales, duty fractions, and DDRG mor-
phology fractions.

number of activity episodes per source is 5.0, and the median lobe
extent is 151.66 kpc.

3.4 ABC Inference

The ABC analysis using summary statistics from 500 prior draws
yields an acceptance rate of 0.006 (3 accepted samples out of 500),
reflecting the high dimensionality of the parameter space. The poste-
rior median for pon = 1.63 (16th—-84th: [1.59, 1.64]), corresponding
to an inferred median active timescale of t,n = 42.65 Myr. The
posterior for oo = 0.50 and pio = 1.61 (0ug = 0.47) are consistent
with the input population parameters.

4 CONCLUSION

We have developed a comprehensive multi-method framework
for determining the duration of the active phase in episodic radio
galaxies. Our results converge on active-phase timescales spanning
30-120 Myr depending on the method and source properties: the
MCMC analysis of individual source spectra recovers ton = 102 Myr
for the prototype J1007+3540, while population-level analyses yield
median values of 31-43 Myr across the radio galaxy population. The
quiescent gap between episodes (244.47 Myr from the dynamical
model) significantly exceeds the active-phase duration, implying
that radio galaxies spend the majority of their episodic lifecycle
in a quiescent state. The duty fraction of 0.576 and DDRG frac-
tion of 0.234 provide testable predictions for current and upcoming
low-frequency radio surveys.

4.1 Limitations and Ethical Considerations

The CI-off model assumes a uniform magnetic field and single-zone
emission, which simplifies the complex internal structure of real ra-
dio lobes. MCMC posteriors are broad due to degeneracies between
magnetic field strength and spectral age. The population synthesis
adopts log-normal distributions for activity timescales, which may
not capture the full diversity of AGN fueling mechanisms. The ABC

Conference’17, July 2017, Washington, DC, USA

acceptance rate of 0.006 indicates that substantially more prior sam-
ples are needed for robust posterior estimation. This work is purely
computational and does not raise direct ethical concerns, though
improved AGN duty cycle estimates may inform energy injection
models relevant to cosmological simulations.
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