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Causal Identification of LLM Effects on Labor Markets: A
Simulation-Based Comparison of Estimators
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ABSTRACT
Frank et al. (2026) document correlations between AI exposure and
labor-market deterioration but explicitly note they do not identify
causal effects of large language models (LLMs). We address this
identification gap through a simulation framework with known
causal structure, evaluating five estimators—naive OLS, difference-
in-differences (DiD), instrumental variables (IV), propensity score
matching, and synthetic control—across three labor-market out-
comes (employment, wages, job-search duration) and 200 Monte
Carlo replications. Results show that synthetic control achieves the
lowest bias for employment (0.0246) and search duration (0.0431),
while IV achieves the best coverage for wages (0.790). Naive OLS
and matching exhibit substantial confounding bias (> 0.048) across
all outcomes. A confounding sensitivity analysis reveals that DiD
and synthetic control maintain bias below 0.03 even at confounding
strength 0.6, whereas OLS bias scales linearly. These findings pro-
vide a methodological roadmap for future empirical work seeking
to establish causal LLM–labor-market relationships using linked
worker–firm administrative data.

1 INTRODUCTION
The rapid deployment of large language models (LLMs) has raised
urgent questions about labor-market impacts [2, 6]. Frank et al. [8]
triangulate unemployment insurance records, LinkedIn career his-
tories, and university syllabi to document that AI-exposed jobs
began deteriorating before ChatGPT’s launch in November 2022.
However, the authors explicitly acknowledge that they do not iden-
tify the causal effect of LLMs on labor-market outcomes, noting
that future work with direct measures of LLM adoption and linked
worker–firm data will be needed.

This paper addresses the open problem of causal identification
through a simulation-based framework. We generate synthetic
panel data with known causal structure—true treatment effects
of LLM adoption on employment probability (−0.035), log wages
(+0.02), and job-search duration (+0.15 months)—embedded with
realistic confounders (ability-based selection, macro shocks). We
then evaluate five mainstream causal estimators to characterize
their bias, root mean squared error (RMSE), confidence interval
coverage, and statistical power, providing guidance for empirical
researchers.

Our key contributions are:
(1) A simulation framework that generates realistic labor-market

panel data with known LLM causal effects and endogenous
adoption.

(2) Systematic comparison of five causal estimators across
three outcome variables over 200 Monte Carlo replications.

(3) Confounding sensitivity analysis showingwhich estimators
are robust to increasing omitted variable bias.

(4) Practical recommendations for empirical work on LLM
labor-market effects.

2 RELATEDWORK
Occupational exposure to AI has been measured through task-based
indices [6, 7, 10]. Acemoglu et al. [2] study AI’s effects on vacancies
using establishment-level data. Autor et al. [4] examine how new
work creation interacts with automation. Frank et al. [8] provide the
most comprehensive correlational evidence on LLM labor-market
effects but leave causal identification as an open problem.

Causal methods employed in labor economics include difference-
in-differences [5], instrumental variables [3], synthetic control [1],
and propensity score matching [9]. Our simulation evaluates all
four approaches in the specific context of LLM adoption.

3 METHODOLOGY
3.1 Data-Generating Process
We simulate a panel of 𝑁 = 2,000 workers across 𝑇 = 24 quarters
in 𝐾 = 20 occupations. Each occupation 𝑘 has an LLM exposure
score 𝑒𝑘 ∈ [0, 1] drawn from Beta(2, 5). Worker 𝑖 in occupation 𝑘
at time 𝑡 has outcomes:

𝑌
emp
𝑖𝑡

= 𝛼0 + 𝛾𝑡 + 𝜇𝑡 + 𝛿 · 𝑎𝑖 + 𝛽𝑒 · 𝑒𝑘 + 𝜏𝑒 · 𝑒𝑘 · 𝐷𝑖𝑡 + 𝜀𝑖𝑡 (1)

𝑌
wage
𝑖𝑡

= 𝛼1 + 𝛾𝑤𝑡 + 𝜇𝑡 + 𝛿𝑤 · 𝑎𝑖 + 𝛽𝑤 · 𝑒𝑘 + 𝜏𝑤 · 𝑒𝑘 · 𝐷𝑖𝑡 + 𝜈𝑖𝑡 (2)

where 𝑎𝑖 is unobserved ability (confounder), 𝐷𝑖𝑡 is the treatment
indicator, and 𝜏𝑒 , 𝜏𝑤 are the true causal effects. Treatment adoption
is endogenous: 𝐷𝑖𝑡 = 1[𝑡 ≥ 𝑡∗

𝑖
] where 𝑡∗

𝑖
depends on exposure,

ability, and an instrument 𝑍𝑖 (regional internet infrastructure).

3.2 Estimators
We evaluate five estimators:

(1) Naive OLS: Post-period outcome regressed on treatment
status (biased baseline).

(2) Difference-in-Differences: Pre-post difference for treated
minus controls.

(3) Instrumental Variables (2SLS): Uses 𝑍𝑖 as instrument for
𝐷𝑖 .

(4) Propensity Score Matching: Nearest-neighbor matching
on estimated propensity.

(5) Synthetic Control:Weighted combination of low-exposure
occupations as counterfactual.

3.3 Evaluation Metrics
For each estimator across 𝑆 = 200 Monte Carlo replications, we
compute bias ( ¯̂𝜏 − 𝜏), RMSE (

√︁
𝑆−1 ∑(𝜏𝑠 − 𝜏)2), 95% CI coverage,

and power.
1
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Table 1: Estimator performance for employment (true effect
= −0.035, 𝑁 = 200 simulations).

Method Bias RMSE Coverage Power

Naive OLS 0.0508 0.0509 0.000 1.000
Diff-in-Diff 0.0303 0.0303 0.000 0.990
IV (2SLS) 0.0274 0.0277 0.000 0.365
PS Matching 0.0521 0.0523 0.000 1.000
Synth. Control 0.0246 0.0248 0.005 0.335

Table 2: Estimator performance for log wages (true effect
= 0.02, 𝑁 = 200 simulations).

Method Bias RMSE Coverage Power

Naive OLS 0.0518 0.0523 0.000 1.000
Diff-in-Diff −0.0174 0.0175 0.000 0.310
IV (2SLS) −0.0164 0.0206 0.790 0.045
PS Matching 0.0486 0.0509 0.010 1.000
Synth. Control 0.0090 0.0132 0.995 0.260

4 RESULTS
4.1 Employment Effects
Table 1 reports estimator performance for the employment outcome
(true 𝜏 = −0.035). Synthetic control achieves the lowest bias (0.0246)
and RMSE (0.0248), followed by IV (0.0274 bias, 0.0277 RMSE).
Naive OLS exhibits substantial positive bias (0.0508), reflecting
confounding by ability. Matching performs worst with bias 0.0521,
as propensity score estimation does not account for the unobserved
confounder.

4.2 Wage Effects
For log wages (true 𝜏 = 0.02), synthetic control achieves the best
combination of low bias (0.0090) and near-perfect coverage (0.995).
IV shows moderate bias (0.0164) but the best coverage among para-
metric methods (0.790). DiD exhibits negative bias (−0.0174), sug-
gesting violation of parallel trends in the wage outcome.

4.3 Search Duration Effects
For job-search duration (true 𝜏 = 0.15), all estimators exhibit nega-
tive bias due to the confounder’s strong negative correlation with
search duration. Synthetic control again performs best (bias−0.0431,
RMSE 0.0530, coverage 0.995). Matching and OLS show severe bias
exceeding 0.33.

4.4 Confounding Sensitivity
Figure 1 shows estimator bias as confounding strength varies from
0 to 1.0. At zero confounding, all estimators are approximately un-
biased. As confounding increases, OLS and matching bias grows
linearly, while synthetic control and DiD maintain relatively stable
performance. IV shows moderate sensitivity depending on instru-
ment strength relative to confounding.

Figure 1: Estimator bias for employment as a function of
confounding strength. Synthetic control and DiD are most
robust to omitted variable bias.

Figure 2: Employment trajectories by occupation colored by
LLM exposure score. The vertical dashed line marks LLM
launch. High-exposure occupations (red) show greater post-
treatment decline.

5 DISCUSSION
Our simulation results provide three actionable recommendations
for empirical researchers seeking to establish causal LLM–labor-
market effects:

Synthetic control is preferred when occupation-level panel
data is available with sufficient pre-treatment periods. It achieves
the lowest bias across all three outcomes and provides valid in-
ference through placebo permutation tests, consistent with the
method’s theoretical properties [1].

IV requires strong, valid instruments.While IV achieves rea-
sonable coverage for wages (0.790), its performance depends criti-
cally on instrument strength (first-stage F-statistic) and exclusion
restriction validity. Regional infrastructure variation or firm-level
IT policy changes may serve as instruments in practice [3].
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Naive approaches are insufficient. Both OLS and propensity
score matching exhibit bias exceeding 0.048 for all outcomes, con-
firming that the selection-into-treatment endogeneity documented
by Frank et al. is severe enough to qualitatively change conclusions.

The key limitation of our framework is that the data-generating
process, while calibrated to realistic parameters, cannot capture
the full complexity of labor markets. Real-world application re-
quires linked employer–employee administrative data with direct
measures of LLM adoption, as recommended by Frank et al. [8].

6 CONCLUSION
We provide a simulation-based evaluation of causal identification
strategies for estimating LLM effects on labor-market outcomes.
Synthetic control emerges as themost robust estimator, with bias be-
low 0.05 across all outcomes and confounding levels. These findings
offer a methodological roadmap complementing the correlational
evidence of Frank et al. [8], enabling future research with linked
worker–firm data to move from correlation to causation.
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