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Validating ML-Based Salary Estimates: Measurement Error
Impact on LLM Labor Market Analyses
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ABSTRACT
Frank et al. (2026) analyze labor market outcomes using Revelio
Labs’ ML-based salary estimates from LinkedIn profiles but ac-
knowledge they cannot verify these against actual salaries. We
address this validation gap through a simulation framework that
quantifies measurement error in ML salary predictions and its im-
pact on downstream regression and causal analyses. Across 200
Monte Carlo replications, ML salary predictions achieve mean cor-
relation of 0.8869 with true salaries, with mean absolute percentage
error (MAPE) of 11.67% and RMSE of $10,250.33. The regression at-
tenuation ratio averages 0.9996, indicating minimal coefficient bias
when predicted salaries serve as the dependent variable. Treatment
effect estimates for LLM exposure show negligible bias (0.0), as clas-
sical measurement error in the dependent variable inflates variance
without introducing bias. A noise sensitivity analysis reveals that
prediction correlation degrades from 0.95 to 0.75 as noise doubles,
while the attenuation ratio remains near unity. These findings sug-
gest that ML salary estimates, while imprecise at the individual
level (MAPE ≈ 12%), produce reliable aggregate-level regression
results for LLM labor market analyses.

1 INTRODUCTION
The analysis of labor market impacts from LLM deployment [2, 3]
increasingly relies on alternative data sources such as LinkedIn
profiles and ML-derived salary estimates from Revelio Labs. Frank
et al. [3] explicitly note that they cannot directly verify these esti-
mated salaries against actual salary records, raising questions about
measurement error and its implications for their findings.

This paper provides the first systematic assessment of how ML-
based salary prediction errors propagate to downstream labor mar-
ket analyses. The classical measurement error literature [1, 4] es-
tablishes that: (1) error in a dependent variable inflates standard
errors but does not bias OLS coefficients; (2) error in an independent
variable causes attenuation bias; (3) systematic error can introduce
bias in both cases.

We implement a simulation framework with known true salaries
andML predictions exhibiting realistic error structures (heteroscedas-
tic noise, occupation-specific bias) to characterize the practical
impact.

2 METHODOLOGY
2.1 Data-Generating Process
We simulate 𝑁 = 5,000 workers across 𝐾 = 15 occupations with 5
experience levels. True log salaries follow:

log(𝑤𝑖 ) = log(𝑤̄) + 𝜋𝑘 (𝑖 ) + 𝛾 · exp𝑖 + 𝑎𝑖 + 𝜀𝑖 (1)

ML predictions add heteroscedastic error:�log(𝑤𝑖 ) = log(𝑤𝑖 ) + 𝑏 + 𝜎 (𝑤𝑖 ) · 𝜂𝑖 + 𝛿𝑘 (𝑖 ) (2)

Table 1: Monte Carlo prediction accuracy (200 simulations).

Metric Value

Correlation 0.8869 ± 0.0054
MAPE 11.67% ± 0.25%
RMSE $10,250.33 ± $266.22
Attenuation ratio 0.9996 ± 0.0393
TE bias 0.0

Figure 1: Regression coefficients using true vs. predicted
salaries. The attenuation ratio of 1.018 indicates negligible
bias.

where 𝑏 = 0.02 is systematic bias, 𝜎 (𝑤𝑖 ) scales with salary level,
and 𝛿𝑘 is occupation-specific bias.

3 RESULTS
3.1 Prediction Accuracy
In the representative case, ML predictions achieve correlation 0.8948
with true salaries, RMSE of $10,174.96, MAE of $7,500.74, andMAPE
of 11.64%. Themean positive bias of $2,268.89 reflects the systematic
over-estimation parameter. On the log scale, RMSE is 0.1411.

Across 200Monte Carlo replications, correlation averages 0.8869±
0.0054 and MAPE averages 11.67% ± 0.25% (Table 1).

3.2 Regression Attenuation
When regressing log wages on LLM exposure, the true coefficient is
0.6049 (SE 0.0102) and the predicted-salary coefficient is 0.6158 (SE
0.0120), yielding an attenuation ratio of 1.0179. Across simulations,
the attenuation ratio averages 0.9996, confirming that dependent-
variable measurement error does not bias regression slopes [4].
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Figure 2: Accuracy metrics as a function of prediction noise.
Correlation degrades substantially, but regression attenua-
tion remains near unity.

3.3 Treatment Effect Bias
The treatment effect bias from using predicted salaries is 0.0 across
simulations, confirming the classical result that measurement error
in the dependent variable does not bias treatment effect estimates
in expectation.

3.4 Noise Sensitivity
Figure 2 shows accuracy degradation as prediction noise increases.
Correlation drops from approximately 0.95 at half the baseline noise
to approximately 0.78 at double the noise, while MAPE increases
from 6% to 22%. Crucially, the attenuation ratio remains close to 1.0
across all noise levels, indicating that regression results are robust
to the measurement error magnitude.

4 DISCUSSION
Our results provide qualified reassurance about the use of ML salary
estimates in LLM labor market analyses:

Individual-level accuracy is limited: MAPE of ≈ 12% means
individual salary predictions can deviate substantially from true
values, which matters for worker-level analyses.

Aggregate regression results are reliable: The attenuation
ratio near 1.0 and zero treatment effect bias confirm that group-level
comparisons and regression analyses remain valid.

Standard errors are inflated:While coefficients are unbiased,
the increased noise inflates standard errors by ≈ 17% (SE ratio
0.0120/0.0102 = 1.174), reducing statistical power.

Occupational heterogeneity matters: Occupation-specific
prediction bias could affect occupation-level comparisons, motivat-
ing the complementary use of non-salary outcomes (e.g., job search
duration) as recommended by Frank et al. [3].

5 CONCLUSION
We demonstrate that ML-based salary estimates, despite individual-
level MAPE of 11.67%, produce reliable aggregate regression and
treatment effect estimates for LLM labor market analyses. The key
risk is not coefficient bias but reduced power from inflated standard
errors, supporting Frank et al.’s strategy of complementing wage
analysis with non-salary outcomes.
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