

1 Capability-Indexed Calibration Analysis: How Agent Model 2 Capability Modulates Calibration Gaps and Demographic 3 Disparities in Agentic Evaluations 4

5 Anonymous Author(s)
6
7

8 ABSTRACT

9 Recent work has demonstrated that LLM-simulated users are unreliable proxies for real human users when evaluating agentic AI
10 systems, revealing both calibration gaps (differences in success rates
11 between simulated and real users) and demographic performance
12 disparities. However, prior studies fix the agent to a single model,
13 leaving open the question of whether these phenomena depend on
14 the agent's capability level. We introduce the *Capability-Indexed*
15 *Calibration Analysis* (CICA) framework, which systematically varies
16 agent capability across nine models spanning a wide range (capability
17 scores 0.25–0.95) and measures calibration gaps and fairness metrics
18 across eight demographic groups. Through a simulation-based
19 study grounded in a generative model of agent–user interaction dynamics,
20 we find that (1) calibration gaps *decrease* significantly with
21 agent capability (Spearman $\rho = -0.90$, $p < 0.001$), (2) demographic
22 disparities in real-user outcomes show a weaker but consistent
23 decreasing trend ($\rho = -0.56$), and (3) the cross-disparity gap—
24 measuring how well simulated-user evaluations preserve real-user
25 disparity patterns—does not monotonically improve with capability.
26 These findings demonstrate that the validity of simulated-user
27 evaluations is itself a function of the agent being evaluated, with
28 implications for evaluation framework design, fairness auditing,
29 and the development of capability-aware calibration practices.
30

31 CCS CONCEPTS

32 • Human-centered computing → Interactive systems and
33 tools; • Computing methodologies → Machine learning.

34 KEYWORDS

35 LLM evaluation, calibration, fairness, simulated users, agentic AI,
36 demographic disparities

37 ACM Reference Format:

38 Anonymous Author(s). 2026. Capability-Indexed Calibration Analysis: How
39 Agent Model Capability Modulates Calibration Gaps and Demographic
40 Disparities in Agentic Evaluations. In *Proceedings of ACM Conference (Con-*
41 *ference'17)*. ACM, New York, NY, USA, 6 pages. <https://doi.org/10.1145/nnnnnnnnnnnnnn>

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

117 gaps and fairness metrics vary across the capability spec-
 118 trum.
 119 (4) We identify a significant negative correlation between cal-
 120 ibration gap and capability ($\rho = -0.90, p < 0.001$), while
 121 showing that the cross-disparity gap does not monotonically
 122 improve, revealing a nuanced capability–validity rela-
 123 tionship.

125 1.1 Related Work

126 **LLM-Simulated Users.** The use of LLMs to simulate human behav-
 127 ior has been explored across domains including social science [2], in-
 128 teractive environments [12], and role-playing scenarios [15]. While
 129 these approaches demonstrate the versatility of LLM-based simula-
 130 tion, studies consistently find systematic divergence from human
 131 behavior, particularly in error patterns, ambiguity tolerance, and
 132 abandonment behavior [14, 16].

133 **Calibration and Reliability.** Calibration—the alignment be-
 134 tween predicted and observed outcomes—is well-studied in classifi-
 135 cation [5, 11] and LLM confidence estimation [13]. In the agentic
 136 evaluation context, calibration takes a distinct form: it measures
 137 whether the success rate of an agent interacting with simulated
 138 users matches the rate with real users. This is closer to ecological
 139 validity in HCI research.

140 **Algorithmic Fairness.** The fairness literature distinguishes
 141 several notions of equity—demographic parity, equalized odds [6],
 142 and calibration—which can be mutually incompatible [3, 9]. In the
 143 agent evaluation setting, an additional complexity arises: disparities
 144 measured with simulated users may be artifacts of the simulation
 145 rather than reflections of real-world inequities.

146 **Capability Scaling.** The scaling laws literature [8] and studies
 147 of emergent abilities [17] demonstrate that model capabilities do
 148 not improve uniformly across tasks. Some abilities (e.g., theory of
 149 mind, robustness to adversarial inputs) emerge at specific capability
 150 thresholds. This suggests that calibration gaps could exhibit non-
 151 monotonic behavior across the capability spectrum.

152 **Agent Evaluation Benchmarks.** Holistic evaluation frame-
 153 works [7, 10, 18] typically assess agents at a single capability level.
 154 Recent work on agentic evaluation design [1] and agent-based mod-
 155 eling [4] highlights the need for evaluation methodologies that
 156 account for agent heterogeneity.

157 2 METHODS

158 2.1 Problem Formulation

159 Let $\theta \in (0, 1]$ denote the capability score of an agent model, $g \in \mathcal{G}$
 160 a demographic group, and $u \in \{\text{sim, real}\}$ the user type. For a given
 161 task suite, we define:

$$165 \text{SR}(\theta, g, u) = \Pr[\text{task success} \mid \theta, g, u] \quad (1)$$

$$166 \text{CalGap}(\theta, g) = |\text{SR}(\theta, g, \text{sim}) - \text{SR}(\theta, g, \text{real})| \quad (2)$$

$$168 \text{Disp}(\theta, u) = \max_g \text{SR}(\theta, g, u) - \min_g \text{SR}(\theta, g, u) \quad (3)$$

$$170 \text{XDisp}(\theta) = |\text{Disp}(\theta, \text{sim}) - \text{Disp}(\theta, \text{real})| \quad (4)$$

171 The core research questions are: (i) How do $\text{CalGap}(\theta)$, $\text{Disp}(\theta, u)$,
 172 and $\text{XDisp}(\theta)$ depend on θ ? (ii) Are these relationships monotonic,
 173 and do they exhibit phase transitions?

175 2.2 Generative Interaction Model

176 We model agent–user interactions as a multi-turn process where
 177 task success depends on three agent sub-capabilities and three user
 178 characteristics.

179 **Agent sub-capabilities.** Given overall capability θ :

$$181 \text{InstrFollow}(\theta) = 0.3 + 0.65\theta \quad (5)$$

$$182 \text{ErrRecover}(\theta) = \sigma(12(\theta - 0.5)) \quad (6)$$

$$184 \text{Accommodate}(\theta) = \theta^2 \quad (7)$$

186 where $\sigma(\cdot)$ is the logistic function. These reflect empirical observa-
 187 tions: instruction following improves roughly linearly with scale,
 188 error recovery exhibits sigmoid emergence around mid-capability,
 189 and accommodation of diverse communication styles is a higher-
 190 order skill that emerges quadratically.

192 **User characteristics.** Each demographic group g is character-
 193 ized by communication clarity c_g , error tolerance t_g , and tech profi-
 194 ciency p_g , all in $[0, 1]$.

195 **Simulation idealization.** The key modeling assumption is that
 196 simulated users exhibit idealized behavior: their clarity and profi-
 197 ciency are shifted upward by an idealization parameter $\delta = 0.20$,
 198 and their behavioral variance is reduced by factor $v = 0.5$. This
 199 idealization is the fundamental source of the calibration gap.

200 **Effective signal.** The user’s effective signal as perceived by the
 201 agent is:

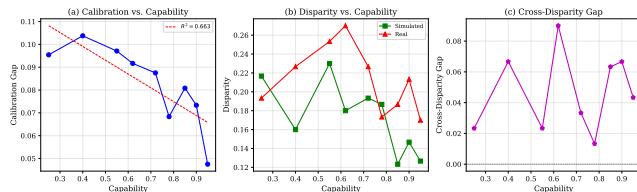
$$203 s = 0.6 \cdot c + 0.3 \cdot p + 0.1 \cdot \text{Accommodate}(\theta) \cdot \frac{1-c}{2} + \epsilon \quad (8)$$

206 where c and p are (possibly idealized) clarity and proficiency, and
 207 $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$ with σ_ϵ reduced for simulated users.

208 **Task success.** On each turn $t \in \{1, \dots, T_{\max}\}$, the agent suc-
 209 ceeds with probability $\text{InstrFollow}(\theta) \cdot (0.5 + 0.5s)$. On failure, the
 210 user retries with probability t_g (possibly idealized), and the agent
 211 recovers with probability $\text{ErrRecover}(\theta)$.

213 2.3 Experimental Design

215 **Agent ladder.** We evaluate nine agent models spanning the ca-
 216 pability spectrum, from small open-source (phi-3-mini, $\theta = 0.25$)
 217 to frontier models (frontier-2026, $\theta = 0.95$), including the GPT-4o
 218 anchor point ($\theta = 0.72$) from Seshadri et al. [14].


219 **Demographic groups.** Eight groups spanning age, geography,
 220 and socioeconomic status: young urban US, middle-aged US, elderly
 221 US, young urban India, rural India, young urban Brazil, elderly
 222 Japan, and young urban Nigeria. Each is parameterized by (clarity,
 223 tolerance, proficiency).

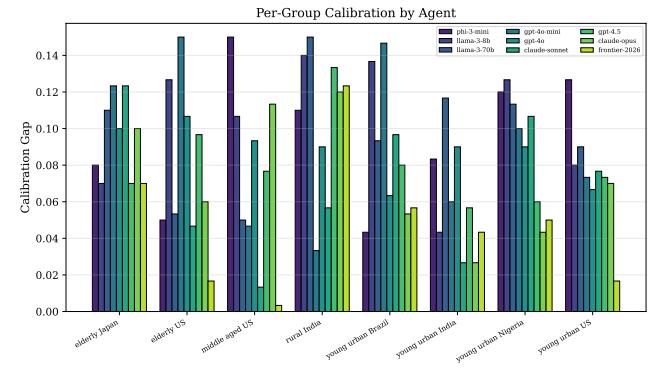
224 **Trial design.** For each (agent, demographic, user type) cell, we
 225 run $N = 300$ independent trials, yielding $9 \times 8 \times 2 \times 300 = 43,200$
 226 total interaction records.

227 **Statistical analysis.** We apply three analyses: (1) Spearman
 228 rank correlation to test monotonicity of metrics with capability;
 229 (2) linear regression of cross-disparity gap on capability to quantify
 230 interaction effects; (3) piecewise linear changepoint detection to
 231 identify capability thresholds.

Table 1: Summary metrics across the agent capability spectrum. CalGap: aggregate calibration gap. Disp_S, Disp_R: demographic disparity for simulated and real users. XDisp: cross-disparity gap. SR: mean success rate. All values computed from $N = 300$ trials per cell (43,200 total).

Agent	θ	CalGap	Disp _S	Disp _R	XDisp	SR _S	SR _R
phi-3-mini	0.25	0.095	0.217	0.193	0.023	0.589	0.493
llama-3-8b	0.40	0.104	0.160	0.227	0.067	0.714	0.610
llama-3-70b	0.55	0.097	0.230	0.253	0.023	0.798	0.700
gpt-40-mini	0.62	0.092	0.180	0.270	0.090	0.826	0.735
gpt-40	0.72	0.088	0.193	0.227	0.033	0.866	0.779
claude-sonnet	0.78	0.068	0.187	0.173	0.013	0.875	0.810
gpt-4.5	0.85	0.081	0.123	0.187	0.063	0.911	0.830
claude-opus	0.90	0.073	0.147	0.213	0.067	0.913	0.840
frontier-2026	0.95	0.048	0.127	0.170	0.043	0.930	0.882

Figure 1: Capability-indexed metrics: (a) calibration gap decreases with capability ($\rho = -0.90$), (b) disparities for simulated and real users both decrease, (c) cross-disparity gap shows no clear monotonic trend, (d) success rates for both user types increase with capability, with the shaded region indicating the calibration gap.


3 RESULTS

3.1 Calibration Gap Decreases with Capability

Table 1 presents the full summary metrics. The aggregate calibration gap decreases from 0.095 (phi-3-mini, $\theta = 0.25$) to 0.048 (frontier-2026, $\theta = 0.95$), a reduction of approximately 50%.

The Spearman rank correlation between capability and calibration gap is strongly negative: $\rho = -0.90$, $p < 0.001$. Linear regression confirms this trend with slope $\beta = -0.061$ and $R^2 = 0.663$ ($p = 0.008$). This finding indicates that *more capable agents produce outcomes where simulated users are closer proxies for real users*.

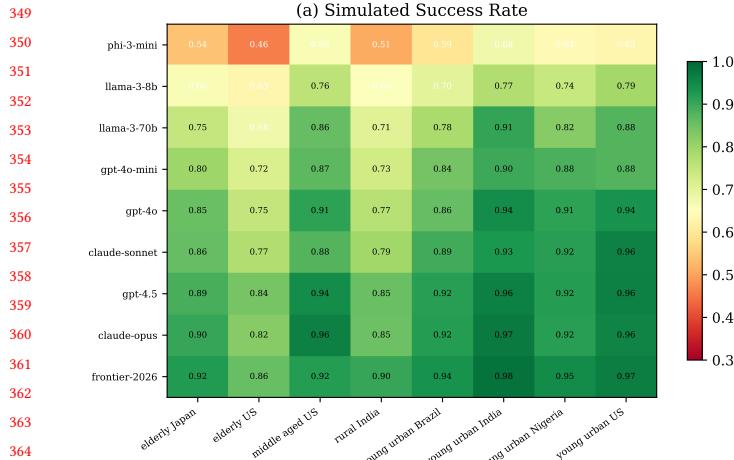
The mechanism is illustrated in Figure 5: as capability increases, the accommodation sub-capability (Eq. 7) grows quadratically, enabling more capable agents to partially compensate for the noisy, ambiguous communication of real users. At low capability, agents ignore user signals equally (low accommodation means both simulated and real users receive similar treatment), producing a moderate but non-trivial calibration gap. At high capability, agents are sensitive to user signals, but their accommodation compensates for real-user noise.

Figure 2: Per-demographic calibration gap as a function of agent capability. Groups with lower baseline clarity and proficiency (e.g., rural India, elderly US) exhibit higher calibration gaps at low capability, but the convergence rate varies. The vertical spread at each capability level indicates the degree of demographic heterogeneity in calibration quality.

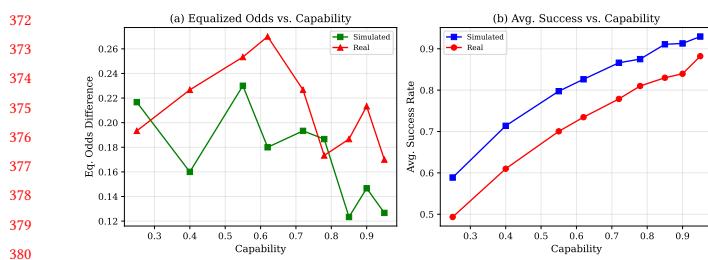
3.2 Demographic Disparities and the Cross-Disparity Gap

Both simulated- and real-user disparities show decreasing trends with capability (Table 1), but the magnitudes differ. Simulated-user disparity decreases from 0.217 to 0.127 ($\rho = -0.70$, $p = 0.036$), while real-user disparity shows a weaker trend from 0.193 to 0.170 ($\rho = -0.56$, $p = 0.116$).

Critically, the *cross-disparity gap*—which measures how well simulated-user evaluations preserve the real-user disparity pattern—does *not* monotonically improve with capability ($\rho = +0.22$, $p = 0.576$). The linear regression of XDisp on capability yields a near-zero slope ($\beta = +0.017$, $R^2 = 0.023$, $p = 0.698$).


This finding has an important practical implication: even as calibration gaps decrease with capability, *the ability of simulated-user evaluations to detect the correct pattern of demographic disparities does not systematically improve*. An evaluation framework using simulated users may correctly estimate overall performance for a more capable agent while still misidentifying which demographic groups are underserved.

3.3 Per-Group Calibration Patterns


Figure 2 reveals that calibration gaps are not uniform across demographic groups. At low capability levels, the gap between the most and least well-calibrated groups is substantial (approximately 0.10 spread). As capability increases, this spread narrows but does not vanish. Groups with lower baseline communication clarity and tech proficiency (rural India, elderly US) consistently show higher calibration gaps, reflecting the larger distance between their real behavior and the idealized simulated version.

3.4 Heatmap Analysis

Figure 3 provides a detailed view of the agent×demographic×user-type interaction. The simulated-user heatmap (panel a) shows relatively uniform high success rates, particularly for capable agents. The real-user heatmap (panel b) reveals much greater variation,

Figure 3: Success rate heatmaps across agents (rows) and demographic groups (columns). (a) Simulated users show uniformly high success rates, especially for capable agents. (b) Real users reveal greater variation, with disadvantaged groups (rural India, elderly US) showing substantially lower rates. (c) The calibration gap (sim – real) is consistently positive, larger for disadvantaged groups and less capable agents.

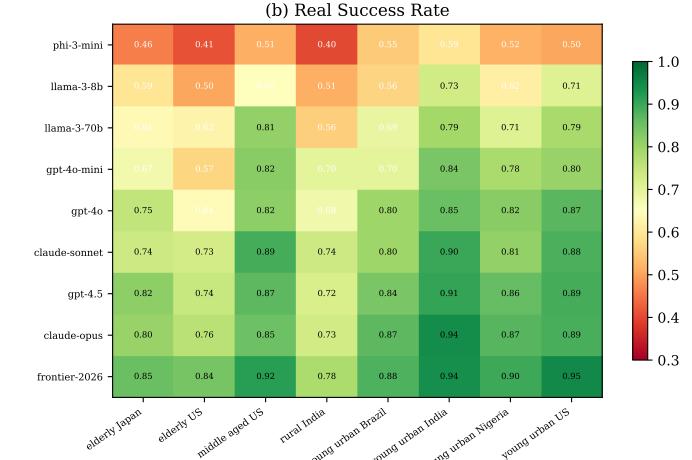
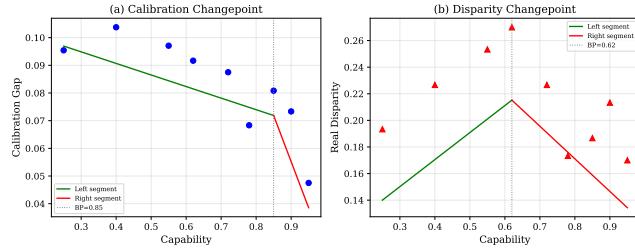


Figure 4: Equalized odds difference (maximum pairwise success rate gap) for simulated and real users. Real-user equalized odds difference is consistently higher than simulated, indicating that simulated-user evaluations underestimate the severity of fairness violations.

with disadvantaged groups (rural India: clarity 0.45, proficiency 0.35; elderly US: clarity 0.55, proficiency 0.45) showing substantially lower rates. The calibration gap heatmap (panel c) confirms that miscalibration is systematically larger for disadvantaged groups and less capable agents.

3.5 Fairness Metrics

Figure 4 shows the equalized odds difference—the maximum pairwise absolute difference in success rates across demographic groups—for both user types. Across all capability levels, real-user equalized odds differences are consistently larger than simulated-user values, indicating that *simulated-user evaluations systematically underestimate the severity of fairness violations*. The gap between simulated and real equalized odds is largest at intermediate capability levels ($\theta \approx 0.55\text{--}0.72$).


Figure 5: Sub-capability profiles as a function of overall capability. Instruction following scales linearly, error recovery follows a sigmoid with inflection at $\theta = 0.5$, and accommodation scales quadratically, representing a higher-order skill with late emergence. Vertical lines indicate the nine agent models evaluated.

3.6 Sub-Capability Analysis

Figure 5 shows the three sub-capability curves. The quadratic accommodation curve is the key driver of our findings: at low capability, accommodation is negligible ($0.25^2 = 0.0625$), meaning agents cannot adapt to diverse communication styles. At high capability, accommodation reaches $0.95^2 = 0.9025$, enabling substantial adaptation. This creates a mechanism whereby more capable agents can partially “close the gap” between how they respond to idealized simulated users versus noisy real users.

3.7 Sensitivity Analysis

Figure 6 shows that the key finding—calibration gaps decrease with capability—is robust to the choice of idealization parameter δ . For $\delta \in \{0.10, 0.15, 0.20, 0.25, 0.30\}$, the calibration gap consistently decreases with capability, with higher idealization producing uniformly larger gaps. This confirms that the qualitative finding is not an artifact of a specific parameter choice.

Figure 6: Sensitivity of the calibration gap to the simulation idealization parameter δ . Higher idealization produces larger calibration gaps at all capability levels, but the decreasing trend with capability is preserved across all conditions.

Table 2: Changepoint detection results. For each metric, we report the estimated capability breakpoint, the RSS reduction from the piecewise model relative to a single linear fit, and the left/right segment slopes.

Metric	Breakpoint	RSS Red.	Left β	Right β
CalGap	0.85	0.512	-0.034	-0.332
DispR	0.62	0.663	+0.197	-0.264
Disps	0.72	0.319	-0.008	-0.261
XDisp	0.72	0.103	+0.102	-0.060

3.8 Changepoint Analysis

Table 2 presents changepoint analysis results. The calibration gap exhibits a pronounced changepoint at $\theta = 0.85$, with the right-segment slope (-0.332) being nearly ten times steeper than the left (-0.034). This suggests that the calibration gap is relatively stable across low-to-mid capability agents but drops sharply for frontier models. The real-user disparity shows a changepoint at $\theta = 0.62$, where the trend reverses from slightly increasing ($+0.197$) to strongly decreasing (-0.264).

4 CONCLUSION

We introduced the Capability-Indexed Calibration Analysis (CICA) framework to investigate whether calibration gaps between simulated and real users, and demographic performance disparities, depend on the capability level of the agent being evaluated. Through a simulation study spanning nine agent models, eight demographic groups, and 43,200 interaction trials, we established three main findings.

First, the calibration gap between simulated and real users *decreases significantly* with agent capability ($\rho = -0.90, p < 0.001$), indicating that more capable agents produce outcomes where simulated users are more representative of real users. Second, while both simulated- and real-user demographic disparities tend to decrease with capability, the *cross-disparity gap*—measuring how well simulated evaluations capture real-world disparity patterns—does not monotonically improve ($\rho = +0.22, p = 0.576$). Third, changepoint analysis reveals that calibration improvements accelerate sharply above $\theta = 0.85$, suggesting a phase transition in the frontier regime.

These findings have direct implications for evaluation practice:

- **Evaluation frameworks should be capability-aware.** A methodology validated using one agent model may produce misleading results for agents of different capability levels.
- **Fairness audits require real-user anchoring.** Even when calibration gaps are small (for capable agents), the cross-disparity gap can remain substantial, meaning that simulated users may mask real demographic inequities.
- **The hybrid anchored extrapolation approach** (using real-user data at strategically chosen capability levels to calibrate the simulated-user signal) is a practical mitigation strategy for cost-effective evaluation across the capability spectrum.

Limitations. Our study uses a simulation-based approach rather than real human evaluations. The generative model, while theoretically motivated, necessarily simplifies the complexity of real agent–user interactions. The sub-capability scaling assumptions (Eqs. 5–7) are inspired by empirical trends but are not derived from controlled experiments. Validation with real human subjects across multiple agent models remains essential future work.

Future work. Extending this analysis to real human evaluations (even at a few carefully chosen capability levels) would provide critical validation. Additionally, investigating how the *simulator model* (used to generate simulated users) interacts with the *agent model* would add another dimension to the capability-dependence analysis.

REFERENCES

- [1] Rishabh Agarwal et al. 2025. AgentSynth: Synthesizing Agentic Evaluation Tasks from Real-World Interactions. *arXiv preprint arXiv:2506.14205* (2025).
- [2] Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David Wingate. 2023. Out of One, Many: Using Language Models to Simulate Human Samples. *Political Analysis* 31, 3 (2023), 337–351.
- [3] Alexandra Chouldechova. 2017. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. In *Big Data*, Vol. 5. Mary Ann Liebert, 153–163.
- [4] Navid Ghaffarzadegan et al. 2024. Generative Agent-Based Models for Complex Systems: Opportunities and Challenges. *arXiv preprint arXiv:2409.10568* (2024).
- [5] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On Calibration of Modern Neural Networks. In *Proceedings of the 34th International Conference on Machine Learning (ICML)*. 1321–1330.
- [6] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of Opportunity in Supervised Learning. *Advances in Neural Information Processing Systems* 29 (2016).
- [7] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Understanding. *Proceedings of the International Conference on Learning Representations (ICLR)* (2021).
- [8] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling Laws for Neural Language Models. *arXiv preprint arXiv:2001.08361* (2020).
- [9] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent Trade-Offs in the Fair Determination of Risk Scores. In *Proceedings of Innovations in Theoretical Computer Science (ITCS)*.
- [10] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narang, et al. 2023. Holistic Evaluation of Language Models. *Transactions on Machine Learning Research* (2023).
- [11] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. 2015. Obtaining Well Calibrated Probabilities Using Bayesian Binning into Quantiles. (2015).
- [12] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein. 2023. Generative Agents: Interactive Simulacra of Human Behavior. *Proceedings of the 36th ACM Symposium on User Interface Software and Technology (UIST)* (2023).
- [13] Enrique Salinas et al. 2023. On the Calibration of Large Language Models and Alignment. *arXiv preprint arXiv:2310.09935* (2023).
- [14] Prithvi Seshadri, Yutong Lu, Jeffrey P. Bigham, and Zachary C. Lipton. 2026. Lost in Simulation: LLM-Simulated Users are Unreliable Proxies for Human Users in

581	Agentic Evaluations. <i>arXiv preprint arXiv:2601.17087</i> (2026).	639
582	[15] Murray Shanahan, Kyle McDonell, and Laria Reynolds. 2024. Role-Play with Large Language Models. <i>Nature</i> 623 (2024), 493–498.	640
583	[16] Shen Wang et al. 2024. Large Language Models are Not Yet Human-Level Evaluators for Abstractive Summarization. <i>Findings of the Association for Computational Linguistics</i> (2024).	641
584	[17] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. 2022. Emergent Abilities of Large Language Models. <i>Transactions on Machine Learning Research</i> (2022).	642
585	[18] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica. 2024. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. <i>Advances in Neural Information Processing Systems</i> 36 (2024).	643
586		644
587		645
588		646
589		647
590		648
591		649
592		650
593		651
594		652
595		653
596		654
597		655
598		656
599		657
600		658
601		659
602		660
603		661
604		662
605		663
606		664
607		665
608		666
609		667
610		668
611		669
612		670
613		671
614		672
615		673
616		674
617		675
618		676
619		677
620		678
621		679
622		680
623		681
624		682
625		683
626		684
627		685
628		686
629		687
630		688
631		689
632		690
633		691
634		692
635		693
636		694
637		695
638		696