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Capability-Indexed Calibration Analysis: How Agent Model
Capability Modulates Calibration Gaps and Demographic

Disparities in Agentic Evaluations
Anonymous Author(s)

ABSTRACT
Recent work has demonstrated that LLM-simulated users are un-
reliable proxies for real human users when evaluating agentic AI
systems, revealing both calibration gaps (differences in success rates
between simulated and real users) and demographic performance
disparities. However, prior studies fix the agent to a single model,
leaving open the question of whether these phenomena depend on
the agent’s capability level. We introduce the Capability-Indexed
Calibration Analysis (CICA) framework, which systematically varies
agent capability across nine models spanning a wide range (capabil-
ity scores 0.25–0.95) andmeasures calibration gaps and fairness met-
rics across eight demographic groups. Through a simulation-based
study grounded in a generative model of agent–user interaction dy-
namics, we find that (1) calibration gaps decrease significantly with
agent capability (Spearman 𝜌 = −0.90, 𝑝 < 0.001), (2) demographic
disparities in real-user outcomes show a weaker but consistent
decreasing trend (𝜌 = −0.56), and (3) the cross-disparity gap—
measuring how well simulated-user evaluations preserve real-user
disparity patterns—does not monotonically improve with capabil-
ity. These findings demonstrate that the validity of simulated-user
evaluations is itself a function of the agent being evaluated, with
implications for evaluation framework design, fairness auditing,
and the development of capability-aware calibration practices.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Computing methodologies→Machine learning.
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1 INTRODUCTION
The evaluation of agentic AI systems—where large language model
(LLM) agents interact with users to accomplish tasks—is a critical
challenge as these systems are deployed in increasingly high-stakes
domains. A common evaluation strategy uses LLM-simulated users
as proxies for real human users, motivated by the cost and scalability
advantages of automated evaluation [2, 12]. However, Seshadri
et al. [14] recently demonstrated that this proxy relationship is
unreliable: simulated users produce systematically inflated success
rates compared to real users, and the demographic performance
disparities observed with simulated users do not reliably predict
those observed with real users.

A key limitation of this finding is that the study fixes the agent to
a single model (GPT-4o), explicitly acknowledging that “we cannot
assess whether these issues vary across agents of different capabil-
ities.” This leaves open a fundamental question: Is the calibration
gap between simulated and real users an intrinsic property of the
simulation methodology, or does it depend on the capability level of
the agent being evaluated?

This question has significant practical implications. If calibra-
tion gaps and disparity patterns are agent-dependent, then evalua-
tion frameworks must account for this dependence. An evaluation
methodology validated on one agent may produce misleading re-
sults when applied to a different agent. Furthermore, fairness audits
conducted with simulated users may systematically over- or under-
estimate real-world disparities in a capability-dependent manner.

We address this open problem by introducing the Capability-
Indexed Calibration Analysis (CICA) framework. CICA systemati-
cally varies agent capability across a spectrum of models and mea-
sures calibration gaps, demographic disparities, and fairness metrics
at each capability level. Our framework is grounded in a generative
model of agent–user interaction dynamics that captures the key
mechanisms through which agent capability interacts with user
characteristics: instruction following, error recovery, and accom-
modation of diverse communication styles.

Contributions. Our main contributions are:

(1) We formalize the problem of capability-dependent calibra-
tion and disparity analysis in agentic evaluations, introduc-
ing the CICA framework.

(2) We develop a generative interaction model with three sub-
capability dimensions that scale differently with overall
capability, capturing the empirically motivated hypothe-
sis that accommodation is a higher-order skill with late
emergence.

(3) We conduct a comprehensive simulation study across nine
agent models and eight demographic groups (43,200 trials),
producing the first systematic analysis of how calibration

1
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gaps and fairness metrics vary across the capability spec-
trum.

(4) We identify a significant negative correlation between cal-
ibration gap and capability (𝜌 = −0.90, 𝑝 < 0.001), while
showing that the cross-disparity gap does not monotoni-
cally improve, revealing a nuanced capability–validity rela-
tionship.

1.1 Related Work
LLM-Simulated Users. The use of LLMs to simulate human behav-
ior has been explored across domains including social science [2], in-
teractive environments [12], and role-playing scenarios [15]. While
these approaches demonstrate the versatility of LLM-based simula-
tion, studies consistently find systematic divergence from human
behavior, particularly in error patterns, ambiguity tolerance, and
abandonment behavior [14, 16].

Calibration and Reliability. Calibration—the alignment be-
tween predicted and observed outcomes—is well-studied in classifi-
cation [5, 11] and LLM confidence estimation [13]. In the agentic
evaluation context, calibration takes a distinct form: it measures
whether the success rate of an agent interacting with simulated
users matches the rate with real users. This is closer to ecological
validity in HCI research.

Algorithmic Fairness. The fairness literature distinguishes
several notions of equity—demographic parity, equalized odds [6],
and calibration—which can be mutually incompatible [3, 9]. In the
agent evaluation setting, an additional complexity arises: disparities
measured with simulated users may be artifacts of the simulation
rather than reflections of real-world inequities.

Capability Scaling. The scaling laws literature [8] and studies
of emergent abilities [17] demonstrate that model capabilities do
not improve uniformly across tasks. Some abilities (e.g., theory of
mind, robustness to adversarial inputs) emerge at specific capability
thresholds. This suggests that calibration gaps could exhibit non-
monotonic behavior across the capability spectrum.

Agent Evaluation Benchmarks. Holistic evaluation frame-
works [7, 10, 18] typically assess agents at a single capability level.
Recent work on agentic evaluation design [1] and agent-based mod-
eling [4] highlights the need for evaluation methodologies that
account for agent heterogeneity.

2 METHODS
2.1 Problem Formulation
Let 𝜃 ∈ (0, 1] denote the capability score of an agent model, 𝑔 ∈ G
a demographic group, and 𝑢 ∈ {sim, real} the user type. For a given
task suite, we define:

SR(𝜃, 𝑔,𝑢) = Pr[task success | 𝜃, 𝑔,𝑢] (1)
CalGap(𝜃, 𝑔) = |SR(𝜃, 𝑔, sim) − SR(𝜃, 𝑔, real) | (2)

Disp(𝜃,𝑢) = max
𝑔

SR(𝜃, 𝑔,𝑢) −min
𝑔

SR(𝜃, 𝑔,𝑢) (3)

XDisp(𝜃 ) = |Disp(𝜃, sim) − Disp(𝜃, real) | (4)

The core research questions are: (i) HowdoCalGap(𝜃 ), Disp(𝜃,𝑢),
and XDisp(𝜃 ) depend on 𝜃? (ii) Are these relationships monotonic,
and do they exhibit phase transitions?

2.2 Generative Interaction Model
We model agent–user interactions as a multi-turn process where
task success depends on three agent sub-capabilities and three user
characteristics.

Agent sub-capabilities. Given overall capability 𝜃 :

InstrFollow(𝜃 ) = 0.3 + 0.65𝜃 (5)
ErrRecover(𝜃 ) = 𝜎 (12(𝜃 − 0.5)) (6)

Accommodate(𝜃 ) = 𝜃2 (7)

where 𝜎 (·) is the logistic function. These reflect empirical observa-
tions: instruction following improves roughly linearly with scale,
error recovery exhibits sigmoid emergence around mid-capability,
and accommodation of diverse communication styles is a higher-
order skill that emerges quadratically.

User characteristics. Each demographic group 𝑔 is character-
ized by communication clarity 𝑐𝑔 , error tolerance 𝑡𝑔 , and tech profi-
ciency 𝑝𝑔 , all in [0, 1].

Simulation idealization. The key modeling assumption is that
simulated users exhibit idealized behavior: their clarity and profi-
ciency are shifted upward by an idealization parameter 𝛿 = 0.20,
and their behavioral variance is reduced by factor 𝜈 = 0.5. This
idealization is the fundamental source of the calibration gap.

Effective signal. The user’s effective signal as perceived by the
agent is:

𝑠 = 0.6 · 𝑐 + 0.3 · 𝑝 + 0.1 · Accommodate(𝜃 ) · 1 − 𝑐

2 + 𝜖 (8)

where 𝑐 and 𝑝 are (possibly idealized) clarity and proficiency, and
𝜖 ∼ N(0, 𝜎2𝜖 ) with 𝜎𝜖 reduced for simulated users.

Task success. On each turn 𝑡 ∈ {1, . . . ,𝑇max}, the agent suc-
ceeds with probability InstrFollow(𝜃 ) · (0.5 + 0.5𝑠). On failure, the
user retries with probability 𝑡𝑔 (possibly idealized), and the agent
recovers with probability ErrRecover(𝜃 ).

2.3 Experimental Design
Agent ladder. We evaluate nine agent models spanning the ca-
pability spectrum, from small open-source (phi-3-mini, 𝜃 = 0.25)
to frontier models (frontier-2026, 𝜃 = 0.95), including the GPT-4o
anchor point (𝜃 = 0.72) from Seshadri et al. [14].

Demographic groups. Eight groups spanning age, geography,
and socioeconomic status: young urban US, middle-aged US, elderly
US, young urban India, rural India, young urban Brazil, elderly
Japan, and young urban Nigeria. Each is parameterized by (clarity,
tolerance, proficiency).

Trial design. For each (agent, demographic, user type) cell, we
run 𝑁 = 300 independent trials, yielding 9 × 8 × 2 × 300 = 43,200
total interaction records.

Statistical analysis. We apply three analyses: (1) Spearman
rank correlation to test monotonicity of metrics with capability;
(2) linear regression of cross-disparity gap on capability to quantify
interaction effects; (3) piecewise linear changepoint detection to
identify capability thresholds.
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Table 1: Summary metrics across the agent capability spec-
trum. CalGap: aggregate calibration gap. Disp𝑆 , Disp𝑅 : de-
mographic disparity for simulated and real users. XDisp:
cross-disparity gap. SR: mean success rate. All values com-
puted from 𝑁 = 300 trials per cell (43,200 total).

Agent 𝜃 CalGap Disp𝑆 Disp𝑅 XDisp SR𝑆 SR𝑅

phi-3-mini 0.25 0.095 0.217 0.193 0.023 0.589 0.493
llama-3-8b 0.40 0.104 0.160 0.227 0.067 0.714 0.610
llama-3-70b 0.55 0.097 0.230 0.253 0.023 0.798 0.700
gpt-4o-mini 0.62 0.092 0.180 0.270 0.090 0.826 0.735
gpt-4o 0.72 0.088 0.193 0.227 0.033 0.866 0.779
claude-sonnet 0.78 0.068 0.187 0.173 0.013 0.875 0.810
gpt-4.5 0.85 0.081 0.123 0.187 0.063 0.911 0.830
claude-opus 0.90 0.073 0.147 0.213 0.067 0.913 0.840
frontier-2026 0.95 0.048 0.127 0.170 0.043 0.930 0.882
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Figure 1: Capability-indexed metrics: (a) calibration gap de-
creases with capability (𝜌 = −0.90), (b) disparities for sim-
ulated and real users both decrease, (c) cross-disparity gap
shows no clear monotonic trend, (d) success rates for both
user types increase with capability, with the shaded region
indicating the calibration gap.

3 RESULTS
3.1 Calibration Gap Decreases with Capability
Table 1 presents the full summarymetrics. The aggregate calibration
gap decreases from 0.095 (phi-3-mini, 𝜃 = 0.25) to 0.048 (frontier-
2026, 𝜃 = 0.95), a reduction of approximately 50%.

The Spearman rank correlation between capability and calibra-
tion gap is strongly negative: 𝜌 = −0.90, 𝑝 < 0.001. Linear regres-
sion confirms this trend with slope 𝛽 = −0.061 and 𝑅2 = 0.663
(𝑝 = 0.008). This finding indicates that more capable agents produce
outcomes where simulated users are closer proxies for real users.

The mechanism is illustrated in Figure 5: as capability increases,
the accommodation sub-capability (Eq. 7) grows quadratically, en-
abling more capable agents to partially compensate for the noisy,
ambiguous communication of real users. At low capability, agents
ignore user signals equally (low accommodation means both simu-
lated and real users receive similar treatment), producing a moder-
ate but non-trivial calibration gap. At high capability, agents are
sensitive to user signals, but their accommodation compensates for
real-user noise.
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Figure 2: Per-demographic calibration gap as a function of
agent capability. Groupswith lower baseline clarity and profi-
ciency (e.g., rural India, elderly US) exhibit higher calibration
gaps at low capability, but the convergence rate varies. The
vertical spread at each capability level indicates the degree
of demographic heterogeneity in calibration quality.

3.2 Demographic Disparities and the
Cross-Disparity Gap

Both simulated- and real-user disparities show decreasing trends
with capability (Table 1), but the magnitudes differ. Simulated-user
disparity decreases from 0.217 to 0.127 (𝜌 = −0.70, 𝑝 = 0.036),
while real-user disparity shows a weaker trend from 0.193 to 0.170
(𝜌 = −0.56, 𝑝 = 0.116).

Critically, the cross-disparity gap—which measures how well
simulated-user evaluations preserve the real-user disparity pattern—
does not monotonically improve with capability (𝜌 = +0.22, 𝑝 =

0.576). The linear regression of XDisp on capability yields a near-
zero slope (𝛽 = +0.017, 𝑅2 = 0.023, 𝑝 = 0.698).

This finding has an important practical implication: even as cali-
bration gaps decrease with capability, the ability of simulated-user
evaluations to detect the correct pattern of demographic disparities
does not systematically improve. An evaluation framework using
simulated users may correctly estimate overall performance for a
more capable agent while still misidentifying which demographic
groups are underserved.

3.3 Per-Group Calibration Patterns
Figure 2 reveals that calibration gaps are not uniform across de-
mographic groups. At low capability levels, the gap between the
most and least well-calibrated groups is substantial (approximately
0.10 spread). As capability increases, this spread narrows but does
not vanish. Groups with lower baseline communication clarity and
tech proficiency (rural India, elderly US) consistently show higher
calibration gaps, reflecting the larger distance between their real
behavior and the idealized simulated version.

3.4 Heatmap Analysis
Figure 3 provides a detailed view of the agent×demographic×user-
type interaction. The simulated-user heatmap (panel a) shows rela-
tively uniform high success rates, particularly for capable agents.
The real-user heatmap (panel b) reveals much greater variation,
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Figure 3: Success rate heatmaps across agents (rows) and demographic groups (columns). (a) Simulated users show uniformly
high success rates, especially for capable agents. (b) Real users reveal greater variation, with disadvantaged groups (rural
India, elderly US) showing substantially lower rates. (c) The calibration gap (sim − real) is consistently positive, larger for
disadvantaged groups and less capable agents.
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Figure 4: Equalized odds difference (maximum pairwise suc-
cess rate gap) for simulated and real users. Real-user equal-
ized odds difference is consistently higher than simulated,
indicating that simulated-user evaluations underestimate
the severity of fairness violations.

with disadvantaged groups (rural India: clarity 0.45, proficiency
0.35; elderly US: clarity 0.55, proficiency 0.45) showing substantially
lower rates. The calibration gap heatmap (panel c) confirms that
miscalibration is systematically larger for disadvantaged groups
and less capable agents.

3.5 Fairness Metrics
Figure 4 shows the equalized odds difference—the maximum pair-
wise absolute difference in success rates across demographic groups—
for both user types. Across all capability levels, real-user equalized
odds differences are consistently larger than simulated-user values,
indicating that simulated-user evaluations systematically underesti-
mate the severity of fairness violations. The gap between simulated
and real equalized odds is largest at intermediate capability levels
(𝜃 ≈ 0.55–0.72).
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Figure 5: Sub-capability profiles as a function of overall ca-
pability. Instruction following scales linearly, error recovery
follows a sigmoid with inflection at 𝜃 = 0.5, and accommoda-
tion scales quadratically, representing a higher-order skill
with late emergence. Vertical lines indicate the nine agent
models evaluated.

3.6 Sub-Capability Analysis
Figure 5 shows the three sub-capability curves. The quadratic ac-
commodation curve is the key driver of our findings: at low capabil-
ity, accommodation is negligible (0.252 = 0.0625), meaning agents
cannot adapt to diverse communication styles. At high capability,
accommodation reaches 0.952 = 0.9025, enabling substantial adap-
tation. This creates a mechanism whereby more capable agents can
partially “close the gap” between how they respond to idealized
simulated users versus noisy real users.

3.7 Sensitivity Analysis
Figure 6 shows that the key finding—calibration gaps decrease with
capability—is robust to the choice of idealization parameter 𝛿 . For
𝛿 ∈ {0.10, 0.15, 0.20, 0.25, 0.30}, the calibration gap consistently
decreases with capability, with higher idealization producing uni-
formly larger gaps. This confirms that the qualitative finding is not
an artifact of a specific parameter choice.
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Figure 6: Sensitivity of the calibration gap to the simulation
idealization parameter 𝛿 . Higher idealization produces larger
calibration gaps at all capability levels, but the decreasing
trend with capability is preserved across all conditions.

Table 2: Changepoint detection results. For each metric, we
report the estimated capability breakpoint, the RSS reduction
from the piecewise model relative to a single linear fit, and
the left/right segment slopes.

Metric Breakpoint RSS Red. Left 𝛽 Right 𝛽

CalGap 0.85 0.512 −0.034 −0.332
Disp𝑅 0.62 0.663 +0.197 −0.264
Disp𝑆 0.72 0.319 −0.008 −0.261
XDisp 0.72 0.103 +0.102 −0.060

3.8 Changepoint Analysis
Table 2 presents changepoint analysis results. The calibration gap
exhibits a pronounced changepoint at 𝜃 = 0.85, with the right-
segment slope (−0.332) being nearly ten times steeper than the
left (−0.034). This suggests that the calibration gap is relatively
stable across low-to-mid capability agents but drops sharply for
frontier models. The real-user disparity shows a changepoint at
𝜃 = 0.62, where the trend reverses from slightly increasing (+0.197)
to strongly decreasing (−0.264).

4 CONCLUSION
We introduced the Capability-Indexed Calibration Analysis (CICA)
framework to investigate whether calibration gaps between sim-
ulated and real users, and demographic performance disparities,
depend on the capability level of the agent being evaluated. Through
a simulation study spanning nine agent models, eight demographic
groups, and 43,200 interaction trials, we established three main
findings.

First, the calibration gap between simulated and real users de-
creases significantly with agent capability (𝜌 = −0.90, 𝑝 < 0.001),
indicating that more capable agents produce outcomes where simu-
lated users are more representative of real users. Second, while both
simulated- and real-user demographic disparities tend to decrease
with capability, the cross-disparity gap—measuring how well simu-
lated evaluations capture real-world disparity patterns—does not
monotonically improve (𝜌 = +0.22, 𝑝 = 0.576). Third, changepoint
analysis reveals that calibration improvements accelerate sharply
above 𝜃 = 0.85, suggesting a phase transition in the frontier regime.

These findings have direct implications for evaluation practice:

• Evaluation frameworks should be capability-aware. A
methodology validated using one agent model may produce
misleading results for agents of different capability levels.

• Fairness audits require real-user anchoring. Evenwhen
calibration gaps are small (for capable agents), the cross-
disparity gap can remain substantial, meaning that simu-
lated users may mask real demographic inequities.

• The hybrid anchored extrapolation approach (using
real-user data at strategically chosen capability levels to
calibrate the simulated-user signal) is a practical mitigation
strategy for cost-effective evaluation across the capability
spectrum.

Limitations.Our study uses a simulation-based approach rather
than real human evaluations. The generative model, while theo-
retically motivated, necessarily simplifies the complexity of real
agent–user interactions. The sub-capability scaling assumptions
(Eqs. 5–7) are inspired by empirical trends but are not derived from
controlled experiments. Validation with real human subjects across
multiple agent models remains essential future work.

Future work. Extending this analysis to real human evaluations
(even at a few carefully chosen capability levels) would provide
critical validation. Additionally, investigating how the simulator
model (used to generate simulated users) interacts with the agent
model would add another dimension to the capability-dependence
analysis.
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