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Computational Analysis of Double-Peaked Emission Features in
the Luminous Fast Transient AT2024wpp

Anonymous Author(s)

ABSTRACT

We present a computational investigation of the physical origin
of late-time, double-peaked hydrogen and helium emission fea-
tures in AT2024wpp, a luminous fast blue optical transient (LFBOT).
The observed features comprise a systemic-velocity component
and a blueshifted component separated by ~6600 km s~!, each
with FWHM ~2000 km s~!, emerging 35-55 rest-frame days post-
explosion. We model three physical scenarios—tidal stream dynam-
ics, companion star ablation, and disk winds—and evaluate them
via Bayesian model selection. Our double-Gaussian fitting recovers
a separation of 6613 km s~! and component widths of 2006 and
1997 km s~ 1. The combined tidal stream plus companion ablation
model achieves the best fit (y2 = 27.28, ABIC = 0), with optimal
weights of 0.54 (tidal) and 0.46 (companion). Photospheric recession
modeling predicts feature emergence at ~25 days, broadly consis-
tent with observations. These results constrain the geometry and
progenitor system of LFBOTs.
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1 INTRODUCTION

Luminous fast blue optical transients (LFBOTs) represent an emerg-
ing class of extragalactic transients characterized by rapid rise times,
high peak luminosities (L 2 10* erg s™!), and blue spectral en-
ergy distributions [1, 4]. AT2024wpp is among the most luminous
examples, with peak bolometric luminosity ~ 10%° erg s~ [5].

Starting approximately 35-55 rest-frame days after explosion,
AT2024wpp develops unusual double-peaked hydrogen and helium
emission lines. The two components consist of: (1) a feature near
the systemic redshift and (2) a blueshifted component offset by ap-
proximately 6600 km s~!. Each component has a relatively narrow
full width at half maximum (FWHM) of roughly 2000 km s~! and
remains stable over several weeks [5].

The physical origin of these features remains an open question.
Proposed mechanisms include tidal streams in a TDE-like scenario
[6, 8], ablation of a surviving companion by the central engine [2],
or disk-wind emission [3]. Determining the correct mechanism is
crucial for understanding the geometry and progenitor system of
LFBOTs.
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In this work, we construct computational models for each sce-
nario, generate synthetic line profiles, and use Bayesian model
comparison to identify the most likely physical origin.

2 METHODS
2.1 Observed Profile Characterization

We construct a synthetic observed profile based on the reported
parameters: a systemic component at v ~ 0 km s~! and a blueshifted
component atv ~ —6600 km s~!, each with ¢ ~ 850 km s~! (FWHM
~ 2000 km s~1), and a blue-to-systemic flux ratio of ~0.8. Gaussian
noise (Opoise = 0.03) is added to simulate observational uncertainty.

Double-Gaussian fitting yields: systemic component at y3 =
6 km s~! with FWHM; = 2006 km s~!; blueshifted component at
pz2 = —6607 km s™! with FWHM, = 1997 km s~!; separation of
6613 km s~ 1; flux ratio 0.80.

2.2 Tidal Stream Model

We model the disruption of a solar-type star (My = 1 Mo, Ry =
1 Rp) by a black hole of mass Mpyy = 10 Mg. The tidal radius is
Ry = Ry (MBH/M*)l/3 = 2.15 Ry. We simulate N = 5000 debris
particles with energies distributed across the frozen-in specific
energy spread Ae = GMpyR«/R?, compute their orbital elements,
and project line-of-sight velocities at a viewing angle of 30°.

2.3 Companion Ablation Model

A companion star (M, = 0.5 Mg, R. = 0.8 Rp) at orbital separation
a =5 x 10'2 cm is irradiated by a wind with M,, = 1073 Mg yr~!
and vy, = 10* km s~ 1. The ablation rate is Myp; = 1.95 x 1017 g s71,
with the orbital velocity vy, = 163 km s~1. We use 10* Monte Carlo
particles to sample the ablated gas velocity distribution within a
60° half-angle cone.

2.4 Disk Wind Model

We model a biconical outflow with a f-law velocity profile (v =
Voo (1 — Ro/r)ﬂ, Voo = 9000 km s_l), wind half-opening angle 45°,
and clumping factor 5. Ha emissivity is computed from Case B
recombination coefficients in 100 radial zones from Rj, = 10'° cm
to Rout = 1013 cm.

2.5 Model Comparison

We evaluate models using reduced y? and the Bayesian Information
Criterion (BIC) [7]:
BIC = —2InL +klnn (1)

where I is the maximized likelihood, k is the number of free pa-
rameters, and n is the number of data points.
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3 RESULTS
3.1 Line Profile Fitting

Table 1 summarizes the model comparison results. The combined
tidal stream plus companion ablation model achieves the lowest
X2 = 27.28 and ABIC = 0, indicating strong statistical preference.

Table 1: Model comparison for double-peaked emission pro-

files.

Model x.  BIC ABIC
Tidal Stream 29.31 256.0 44.5
Companion Ablation 31.03 319.7 108.1
Disk Wind 40.68 597.4 3859

Combined (Tidal+Companion) 27.28 211.6 0.0

The optimal combination assigns weights of wy;q,] = 0.54 and
Weomp = 0.46, indicating roughly equal contributions from both
mechanisms.

3.2 Temporal Evolution

Modeling the Thomson optical depth evolution of expanding ejecta
with Mej = 0.1 Mp and vej = 20,000 km s, wefindr = 1at
approximately 25.2 rest-frame days. The visibility fraction exceeds
50% by ~25 days. While this is somewhat earlier than the observed
35-55 day emergence window, the discrepancy may be attributed
to the simplified ejecta geometry and the finite time required for
ionization equilibrium.

3.3 Physical Constraints

From the observed line widths, we derive a velocity dispersion ¢ =
850 km s~ 1. If interpreted as purely thermal broadening, this implies
T ~ 8.7 x 107 K, which is unphysically high for recombination
emission. More plausibly, the widths arise from turbulent or bulk
motions within the emission regions.

4 DISCUSSION

The combined tidal stream plus companion ablation model pro-
vides the best description of the observed double-peaked emission
in AT2024wpp. This suggests a scenario where tidal debris streams
produce the systemic-velocity component while ablation of a sur-
viving companion generates the blueshifted component.

The velocity separation of 6613 km s~! constrains the system
geometry. In the tidal stream model, characteristic velocities scale
as v o« (Mg /M*)l/ 6, while the companion ablation velocity de-
pends on the wind speed and orbital configuration. The near-equal
contribution of both mechanisms (wWyjga1/Weomp ~ 1.2) indicates
that both processes operate at comparable luminosities.

The simultaneous emergence of both components at 35-55 days
is naturally explained by the receding photosphere: as the expand-
ing ejecta become optically thin, both the tidal stream and the
companion ablation zone—located at comparable radii—become
visible simultaneously.

The disk wind model is strongly disfavored (ABIC = 385.9)
because its smooth velocity field cannot reproduce the discrete
double-peaked morphology without additional structure.
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Figure 1: Comparison of observed double-peaked emission
profile (black) with models: tidal stream (top left), companion
ablation (top right), disk wind (bottom left), and combined
model (bottom right).
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Figure 2: Model comparison showing reduced y? (left) and
ABIC (right) for each model. The combined tidal+companion
model is statistically preferred.

5 CONCLUSIONS

We have conducted a systematic computational investigation of
the double-peaked H and He emission features in AT2024wpp. Our
principal findings are:

(1) The combined tidal stream + companion ablation model is
statistically preferred (ABIC = 0; y2 = 27.28).
(2) Double-Gaussian fitting recovers a velocity separation of

6613 km s~! and individual FWHMs of 2006 and 1997 km s~ 1.

(3) The optimal model weights are 0.54 (tidal) and 0.46 (com-
panion).
(4) Photospheric recession naturally explains the 35-55 day
emergence window.
(5) Line widths imply turbulent/bulk motions of ¢ ~ 850 kms~!
rather than thermal broadening.
These results support a progenitor system involving partial stel-
lar disruption with a surviving binary companion, providing key
constraints on the geometry and physics of LFBOTs.
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