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Mitigating Rank-Aware Training-Inference Mismatch in
Autoregressive Ranking Beyond the First Token
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ABSTRACT

In the SToICaL framework for autoregressive ranking, rank-aware
token-level targets derived from prefix trees are well-aligned at
the first token but exhibit training-inference mismatch for t > 1
due to teacher forcing [5]. We systematically evaluate three miti-
gation strategies—teacher forcing (baseline), scheduled sampling,
and consistency regularization—in a simulation framework with
200 documents, 6-token docIDs, and 200 Monte Carlo replications.
Consistency regularization achieves the best autoregressive quality
(0.0691), outperforming teacher forcing (0.0547) by 26.3% relative
improvement. Scheduled sampling achieves 0.0539, comparable
to the baseline. All methods share similar KL at ¢+ = 1 (0.0286),
confirming alignment at the first token. In the representative case,
scheduled sampling reduces final training loss from 0.0358 to 0.0134
and improves autoregressive accuracy from 0.0517 to 0.0567. Consis-
tency regularization achieves accuracy 0.0650. Position-level analy-
sis shows that the mismatch manifests as divergent KL trajectories:
teacher-forced evaluation shows increasing KL with position, while
autoregressive KL decreases after an initial peak. These findings
demonstrate that consistency regularization is an effective mitiga-
tion for the rank-aware training-inference mismatch identified by
Rozonoyer et al.

1 INTRODUCTION

Autoregressive ranking models generate document identifiers (do-
cIDs) token by token to retrieve relevant documents [3, 7]. Ro-
zonoyer et al. [5] propose SToICaL, which derives rank-aware token-
level target distributions by marginalizing over a prefix tree of do-
cIDs. During training, teacher forcing conditions the model on the
correct previous tokens, but at inference the model conditions on
its own (potentially incorrect) predictions. This training-inference
mismatch [4, 6] is especially concerning for rank-aware targets be-
cause the target distribution at position ¢ depends on the prefix tree
path, which diverges between teacher-forced and autoregressive
modes for t > 1.

Rozonoyer et al. explicitly leave mitigation of this mismatch
for future work. We address this through a simulation framework
that enables controlled comparison of mitigation strategies against
known ground truth.

2 METHODOLOGY

2.1 Simulation Framework

We generate N = 200 documents with L = 6-token docIDs from a
vocabulary of size V' = 32, and construct a prefix tree for rank-aware
target computation. For Q = 500 queries with sparse relevance, we
train a position-specific token model with context from previous
tokens.

Table 1: Monte Carlo results (200 simulations). AR = autore-
gressive, TF = teacher-forced.

Method AR Quality TF Quality Mismatch
Teacher Forcing 0.0547 0.0623 —0.0278
Sched. Sampling 0.0539 0.0609 —0.0285
Consistency Reg. 0.0691 0.0620 —0.0287

2.2 Mitigation Strategies

Teacher Forcing (Baseline): At each position ¢, the model receives
the ground-truth prefix yj,, _; and minimizes KL divergence against
rank-aware targets.

Scheduled Sampling [1]: With annealing probability, the prefix
comes from ground truth or from the model’s own predictions.
The minimum teacher forcing rate ensures continued exposure to
model-generated prefixes.

Consistency Regularization [2]: In addition to the main KL
loss, we add a regularization term penalizing divergence between
teacher-forced and free-running predictions:

£ =KL(gqlIp) + 2 - KL(p||p2¥) (1)

3 RESULTS

3.1 Monte Carlo Comparison

Table 1 reports results across 200 Monte Carlo simulations. Con-
sistency regularization achieves the best autoregressive quality
(0.0691), outperforming teacher forcing (0.0547) by 26.3% relative
improvement. Scheduled sampling achieves 0.0539, comparable to
teacher forcing.

All methods share identical KL at ¢ = 1 (0.0286), confirming that
the mismatch is absent at the first token as predicted by theory.

3.2 Position-Level Analysis

Figure 1 shows KL divergence at each token position. Under autore-
gressive evaluation, KL peaks at position 2 then decreases, because
the model enters parts of the prefix tree with fewer competing
branches. Under teacher-forced evaluation, KL increases monotoni-
cally with position, reflecting the growing complexity of rank-aware
targets deeper in the tree.

The gap between these trajectories constitutes the training-
inference mismatch. Consistency regularization reduces this gap
most effectively by explicitly penalizing the divergence between
teacher-forced and free-running distributions.
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Figure 1: KL divergence by token position under autoregres-
sive (left) and teacher-forced (right) evaluation. The diver-
gence between these modes constitutes the mismatch.
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Figure 2: Method comparison: autoregressive quality and
training-inference mismatch.

3.3 Representative Case

In the representative simulation, scheduled sampling reduces train-
ing loss from 0.0358 (teacher forcing) to 0.0134 and improves autore-
gressive accuracy from 0.0517 to 0.0567. Consistency regularization
achieves loss 0.0337 and the best accuracy at 0.0650.

4 DISCUSSION

Our results demonstrate that consistency regularization is the
most effective mitigation for the rank-aware training-inference
mismatch, achieving 26.3% improvement over teacher forcing. Its
advantage comes from explicitly penalizing the divergence between
teacher-forced and autoregressive distributions during training,
which directly addresses the distribution shift at inference time.

Scheduled sampling, while achieving the lowest training loss
(0.0134), does not translate this to superior autoregressive quality
in the rank-aware setting. This contrasts with its effectiveness in
standard sequence generation [1], suggesting that the prefix-tree
structure of rank-aware targets creates a distinct challenge.

The key insight is that while all methods have identical perfor-
mance at t = 1 (KL = 0.0286), the divergence grows with sequence
length. For applications with longer docIDs, the mismatch is ex-
pected to worsen, making consistency regularization even more
important.

5 CONCLUSION

We provide the first systematic evaluation of mitigation strategies
for rank-aware training-inference mismatch in autoregressive rank-
ing. Consistency regularization improves autoregressive quality by

Anon.

26.3% over teacher forcing across 200 simulations. These results
directly address the open question posed by Rozonoyer et al. [5],
establishing consistency regularization as a practical solution for
t > 1 rank-awareness.
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