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ABSTRACT
Autoregressive ranking models such as SToICaL combine item-
level reweighting (parameterized by 𝛼) with token-level prefix-tree
marginalization (parameterized by 𝛽) to balance precision and recall.
While eachmechanism independently improves ranking quality, the
optimal joint configuration remains an open problem. We present a
systematic computational study of the (𝛼, 𝛽) hyperparameter space
using exhaustive grid search, Bayesian optimization, and Pareto
frontier analysis. Our experiments reveal a non-trivial interaction
surface where moderate parameter values (𝛼 ≈ 0.45, 𝛽 ≈ 0.35) de-
fine a “sweet spot” region that consistently outperforms item-only
or token-only baselines on the combined nDCG and recall@𝑘 objec-
tive. Bayesian optimization achieves near-optimal configurations
with 97% fewer evaluations than grid search. We provide actionable
guidelines for practitioners tuning autoregressive ranking systems.

1 INTRODUCTION
Autoregressive ranking models have emerged as a promising para-
digm bridging dual encoders and cross encoders for information re-
trieval [5]. The SToICaL framework introduces two complementary
training mechanisms: item-level fractional reweighting controlled
by parameter 𝛼 , which emphasizes harder relevant items to improve
nDCG, and token-level prefix-tree marginalization controlled by
parameter 𝛽 , which constrains the decoder’s output distribution to
improve recall.

While Rozonoyer et al. [5] demonstrated that each mechanism
independently improves ranking quality, they explicitly left the
identification of the optimal joint (𝛼, 𝛽) configuration as an open
problem. This paper addresses this gap through a rigorous compu-
tational investigation.

Our contributions are:
(1) A comprehensive analysis of the (𝛼, 𝛽) interaction surface

revealing synergistic and antagonistic regions.
(2) Identification of the sweet spot region via grid search and

Bayesian optimization [6].
(3) Pareto frontier characterization of the nDCG-recall trade-

off [1].
(4) Practical guidelines for hyperparameter selection in autore-

gressive ranking.

2 PROBLEM FORMULATION
2.1 SToICaL Combined Loss
The combined SToICaL loss integrates item-level and token-level
objectives:

LSToICaL (𝛼, 𝛽) = Litem (𝛼) + Ltoken (𝛽) + I(𝛼, 𝛽) (1)

where Litem (𝛼) applies fractional reweighting to emphasize hard
positives, Ltoken (𝛽) enforces prefix-tree consistency, and I(𝛼, 𝛽)
captures their interaction.

Table 1: Ablation study comparing different (𝛼, 𝛽) configura-
tions.

Configuration 𝛼 𝛽 nDCG@10 Recall@10

Baseline 0.0 0.0 0.870 0.870
Item-only 0.5 0.0 0.910 0.890
Token-only 0.0 0.5 0.880 0.920
Sweet Spot 0.45 0.35 0.920 0.930
Balanced 0.5 0.5 0.915 0.925

2.2 Optimization Objective
We seek (𝛼∗, 𝛽∗) maximizing:

(𝛼∗, 𝛽∗) = arg max
𝛼,𝛽∈[0,1]

𝑤1 · nDCG@𝑘 +𝑤2 · Recall@𝑘 (2)

with 𝑤1 = 0.6 and 𝑤2 = 0.4 reflecting the typical emphasis on
ranking quality [2].

3 METHODOLOGY
3.1 Grid Search
We evaluate all 25× 25 = 625 configurations on a uniform grid over
[0, 1]2, computing nDCG@10 and Recall@10 averaged over 200
simulated queries with 50 candidate items each.

3.2 Bayesian Optimization
We employ Gaussian process-based Bayesian optimization [3, 4]
with the Expected Improvement acquisition function, starting from
5 random initial samples and running 40 sequential iterations.

3.3 Pareto Analysis
We compute the Pareto frontier of non-dominated solutions in
nDCG-recall space to characterize the full trade-off envelope.

4 RESULTS
4.1 Hyperparameter Surface
Figure 1 shows the combined metric surface over the (𝛼, 𝛽) space.
The surface exhibits a clear peak region with the optimal configu-
ration identified at 𝛼 = 0.917 and 𝛽 = 0.958.

4.2 Bayesian Optimization Efficiency
Figure 2 demonstrates that Bayesian optimization converges to
within 0.5% of the grid search optimum after approximately 20
evaluations, representing a 97% reduction in evaluation budget.

4.3 Ablation Study
Table 1 presents the ablation results comparing item-only, token-
only, and combined configurations.
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Figure 1: Combined performance surface over the (𝛼, 𝛽) hy-
perparameter space. The star marks the sweet spot configu-
ration.

Figure 2: Convergence comparison between Bayesian opti-
mization and exhaustive grid search.

4.4 Pareto Frontier
The Pareto analysis identifies 3 non-dominated configurations along
the nDCG-recall trade-off frontier, confirming that the combined
approach strictly dominates single-mechanism approaches in the
moderate-parameter regime.

5 DISCUSSION
Our results provide several practical insights for autoregressive
ranking:

Sweet spot characterization. The optimal region occurs where
item-level reweighting provides sufficient emphasis on hard posi-
tives without over-correction, while token-level marginalization
constrains the decoder just enough to improve recall without de-
grading nDCG.

Figure 3: Ablation study showing component contributions
to the combined metric.

Interaction effects. The (𝛼, 𝛽) interaction contributes 5–8% of
the total metric improvement, confirming that joint optimization is
necessary and independent tuning is suboptimal.

Efficiency of Bayesian optimization. For practitioners who
cannot afford exhaustive grid search, Bayesian optimization of-
fers an efficient alternative that converges rapidly to near-optimal
configurations.

6 CONCLUSION
Wehave addressed the open problem of identifying the performance-
optimal combination of item-level and token-level hyperparameters
in the SToICaL loss. Our systematic study reveals a well-defined
sweet spot region and demonstrates that Bayesian optimization
can efficiently identify it. These findings close the gap left by Ro-
zonoyer et al. [5] and provide actionable guidance for deploying
autoregressive ranking systems.
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