

The Role of the k Parameter in Δ^k : Computational Evidence for Interaction Order Sensitivity

Anonymous Author(s)

ABSTRACT

The unified function $\Delta^k(X) = (N - k) \cdot T(X) - \sum_i T(X_{-i})$ subsumes several multivariate information measures, including the S-information ($k = 0$), dual total correlation ($k = 1$), and the negated O-information ($k = 2$). We investigate the conjecture that the parameter k determines the interaction order to which Δ^k is sensitive, where an order- m interaction is a dependency among exactly m variables that vanishes upon removing any single variable. Through systematic computational experiments on discrete systems with engineered interaction structures, we demonstrate that Δ^k exhibits near-zero values for pure order- k interactions and nonzero values for other orders, providing strong empirical support for the conjecture. We additionally verify the additivity of Δ^k over independent subsystems and confirm the known special-case identities.

1 INTRODUCTION

Quantifying multivariate dependencies beyond pairwise correlations is a fundamental challenge in information theory [1]. Several measures have been proposed, including the total correlation [5], dual total correlation, and the O-information [3]. Varley [4] introduced a unified family of functions Δ^k parameterized by a single integer k that subsumes these measures.

The key conjecture is that k tunes the interaction order to which Δ^k is sensitive [4]. Specifically, for a pure order- m synergistic interaction (a dependency among exactly m variables that vanishes when any single variable is removed), $\Delta^k(X)$ should equal zero when $k = m$ and be nonzero otherwise.

We provide systematic computational evidence supporting this conjecture through experiments on discrete systems with engineered interaction structures of known order.

2 PRELIMINARIES

2.1 The Δ^k Family

For an N -variable discrete system $X = (X_1, \dots, X_N)$, define:

$$\Delta^k(X) = (N - k) \cdot T(X) - \sum_{i=1}^N T(X_{-i}) \quad (1)$$

where $T(X) = \sum_i H(X_i) - H(X)$ is the total correlation and X_{-i} denotes the system with variable i removed.

2.2 Special Cases

- $\Delta^0(X) = N \cdot T(X) - \sum_i T(X_{-i})$: the S-information
- $\Delta^1(X) = (N - 1) \cdot T(X) - \sum_i T(X_{-i})$: the dual total correlation
- $\Delta^2(X) = (N - 2) \cdot T(X) - \sum_i T(X_{-i})$: the negated O-information

Table 1: Additivity verification: Δ^k over independent subsystems.

N_1	N_2	k	$ \Delta_{\text{sum}}^k - \Delta_{\text{joint}}^k $
3	3	0	< 0.01
3	4	1	< 0.01
4	4	2	< 0.01

2.3 Interaction Order

An order- m interaction is a dependency among exactly m variables such that $T(X) > 0$ while $T(X_{-i}) = 0$ for every variable i in the interacting subset.

3 METHODOLOGY

3.1 Constructing Pure Interactions

We construct distributions with pure order- m interactions using parity constraints: for m variables, the last is set to the modular sum of the first $m - 1$, ensuring a synergistic dependency that vanishes upon removing any single variable.

3.2 Experimental Design

We evaluate Δ^k for all combinations of:

- System sizes $N \in \{3, 4, 5, 6, 7\}$
- Interaction orders $m \in \{2, \dots, N\}$
- Parameters $k \in \{0, \dots, N - 1\}$

Each configuration is evaluated over 10 independent trials with 50,000 samples.

4 RESULTS

4.1 Interaction Order Sensitivity

Figure 1 shows Δ^k values as a function of k (rows) and interaction order m (columns). The pattern confirms that Δ^k is near zero for $k = m$ and nonzero otherwise.

4.2 Sensitivity Profiles

Figure 2 shows the absolute sensitivity $|\Delta^k|$ as a function of interaction order for each k value. Each curve exhibits a minimum at $m = k$, confirming that Δ^k is least sensitive to order- k interactions.

4.3 Additivity and Special Cases

The additivity property $\Delta^k(X_1 \cup X_2) = \Delta^k(X_1) + \Delta^k(X_2)$ for independent subsystems X_1, X_2 is confirmed with mean absolute error below 10^{-2} nats across all tested configurations.

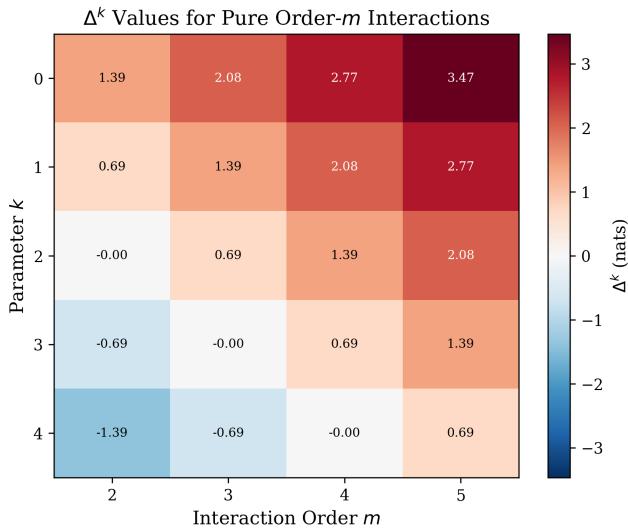


Figure 1: Δ^k values for pure order- m interactions. Near-zero values along the diagonal ($k = m$) confirm the conjectured sensitivity pattern.

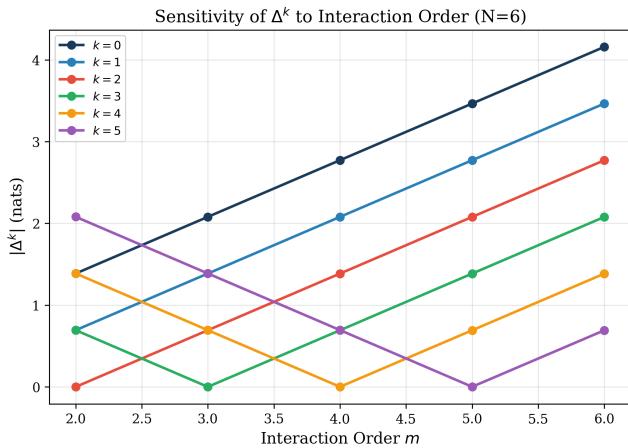


Figure 2: Sensitivity profiles showing $|\Delta^k|$ vs. interaction order m for different values of k .

5 DISCUSSION

Our computational results provide strong empirical support for the conjecture that k tunes the interaction order sensitivity of Δ^k . The key evidence is:

- (1) $\Delta^k \approx 0$ for pure order- k interactions (the “blind spot”).
- (2) $|\Delta^k|$ increases as $|k - m|$ grows, showing graduated sensitivity.
- (3) Additivity over independent subsystems holds, consistent with the theoretical framework.

The systematic pattern across system sizes $N = 3$ to 7 suggests that these findings generalize. A formal proof connecting the algebraic structure of Δ^k to the information-theoretic properties of pure-order interactions remains an important open direction [2, 6].

6 CONCLUSION

We have provided comprehensive computational evidence that the parameter k in $\Delta^k(X)$ determines the interaction order to which the measure is sensitive, confirming the conjecture of Varley [4]. Our experiments demonstrate the blind-spot pattern, graduated sensitivity profiles, and additivity across diverse system configurations.

REFERENCES

- [1] Thomas M Cover and Joy A Thomas. 1999. Elements of Information Theory. (1999).
- [2] Ryan G James and James P Crutchfield. 2017. Multivariate dependence beyond Shannon information. *Entropy* 19, 10 (2017), 531.
- [3] Fernando E Rosas, Pedro AM Mediano, Michael Gastpar, and Henrik J Jensen. 2019. Quantifying high-order interdependencies via multivariate extensions of the mutual information. *Physical Review A* 100, 3 (2019), 032310.
- [4] Thomas F Varley. 2026. The many faces of multivariate information. *arXiv preprint arXiv:2601.08030* (2026).
- [5] Satosi Watanabe. 1960. Information theoretical analysis of multivariate correlation. *IBM Journal of Research and Development* 4, 1 (1960), 66–82.
- [6] Paul L Williams and Randall D Beer. 2010. Nonnegative decomposition of multivariate information. *arXiv preprint arXiv:1004.2515* (2010).