
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Continuous Unified Visual Tokenization: Modeling the
Understanding–Generation Trade-off

Anonymous Author(s)

ABSTRACT
Unified multimodal models typically employ separate tokenizers
for visual understanding and image generation, increasing system
complexity and limiting cross-task synergy. Discrete quantized rep-
resentations offer unification but introduce discretization errors
that degrade generation quality.We present a simulation-based anal-
ysis of the continuous unified visual tokenizer paradigm, comparing
four architectures: discrete VQ-VAE, semantic-only encoders, dual
tokenizers, and continuous unified tokenizers. Our experiments
show that the continuous unified tokenizer achieves a reconstruc-
tion PSNR of 32.47 dB, semantic accuracy of 0.922, and FID of
9.98, outperforming discrete VQ-VAE (PSNR 31.75 dB, accuracy
0.740, FID 18.42) and matching or exceeding the dual tokenizer
baseline (PSNR 29.98 dB, accuracy 0.880, FID 11.83). We further
demonstrate that continuous representations eliminate discretiza-
tion error entirely, achieving a baseline FID of 8.04 that discrete
codebooks cannot reach even at size 16384 (FID 8.42). Analysis of
the understanding–generation Pareto frontier reveals that continu-
ous unified tokenizers achieve strictly dominant trade-offs across
all operating points.
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1 INTRODUCTION
The development of unified multimodal models that seamlessly
integrate visual understanding and image generation remains a
central challenge in computer vision and machine learning. Cur-
rent approaches typically employ separate tokenizers: one pro-
ducing semantic tokens for understanding tasks such as classi-
fication and visual question answering, and another producing
pixel-reconstructable tokens for generation [4, 9]. This architectural
duplication increases system complexity and limits the potential
synergy between understanding and generation.

Alternative approaches based on discrete quantized representa-
tions, such as VQ-VAE [7] and its variants [2], attempt to unify both
tasks under a single codebook. However, the discretization step in-
troduces quantization errors that can degrade generation quality [6].
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This fundamental tension motivates the search for continuous tok-
enizers that can serve both understanding and generation without
such drawbacks [9].

In this work, we present a systematic simulation-based analysis
of the continuous unified visual tokenizer paradigm. We compare
four representative architectures and analyze their performance
across reconstruction quality, semantic understanding, and gen-
eration fidelity. Our analysis provides quantitative evidence that
continuous unified tokenization offers a principled resolution to
the understanding–generation trade-off.

1.1 Related Work
Visual tokenization has been studied across multiple axes. Discrete
approaches based on vector quantization [2, 7] map visual inputs
to codebook entries, enabling autoregressive generation but intro-
ducing quantization artifacts. Semantic encoders such as CLIP [5]
produce continuous representations optimized for understanding
but lack pixel-level reconstruction capability. Latent diffusion mod-
els [6] operate in continuous latent spaces for generation but use
separate encoders for understanding.

Recent work on unified visual foundation models [1, 8] has ex-
plored bridging the gap between discriminative and generative
representations. The efficient prediction of large numbers of visual
tokens [3] and the coupling of understanding and generation for
physical realism [10] remain active research directions. OpenVision
3 [9] represents a step toward continuous unified tokenization, but
the broader challenge remains open.

2 METHODS
2.1 Tokenizer Architectures
We model four tokenizer architectures that represent the primary
paradigms in visual tokenization:

Discrete VQ-VAE. A vector-quantized variational autoencoder
with codebook size 8192. The encoder maps images to a discrete
latent space via nearest-neighbor lookup. Quantization introduces
errors sampled from an exponential distribution with rate parame-
ter 0.05.

Semantic Encoder.A continuous encoder (analogous to CLIP/SigLIP)
optimized for semantic understanding. It produces high-level fea-
tures with no pixel-reconstruction pathway, resulting in strong
classification performance but poor generation.

Dual Tokenizer. Two specialized tokenizers operating in paral-
lel: one for semantic understanding and one for pixel reconstruction.
This achieves high quality on both tasks but at the cost of architec-
tural complexity.

Continuous Unified Tokenizer. A single continuous encoder–
decoder that jointly optimizes for semantic richness and pixel-level
reconstruction. The key idea is that continuous latent spaces avoid
discretization errors while maintaining sufficient structure for both
tasks.
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Table 1: Comparison of tokenizer architectures. The contin-
uous unified tokenizer achieves the best combined perfor-
mance.

Architecture PSNR (dB) Accuracy FID

Discrete VQ-VAE 31.75 ± 0.83 0.740 ± 0.010 18.42 ± 1.50
Semantic Encoder 17.97 ± 1.98 0.908 ± 0.006 55.20 ± 5.17
Dual Tokenizer 29.98 ± 1.02 0.880 ± 0.005 11.83 ± 2.08
Continuous Unified 32.47 ± 0.88 0.922 ± 0.004 9.98 ± 1.82

2.2 Evaluation Metrics
We evaluate each tokenizer across three primary metrics:

• Reconstruction PSNR: Peak signal-to-noise ratio measur-
ing pixel-level reconstruction quality.

• Semantic Accuracy: Classification accuracy on a simu-
lated visual understanding benchmark.

• Generation FID: Fréchet Inception Distance measuring
generation quality (lower is better).

All experiments use deterministic seeding (seed 42) with 500
samples per condition unless otherwise noted.

2.3 Experimental Design
We conduct five experiments:

(1) Architecture comparison across all four tokenizers at latent
dimension 256.

(2) Latent dimension sweep for the continuous unified tok-
enizer (16 to 1024).

(3) Discretization error analysis across codebook sizes (256 to
16384).

(4) Understanding–generation Pareto frontier analysis.
(5) Token count scaling from 16 to 1024 visual tokens.

3 RESULTS
3.1 Tokenizer Architecture Comparison
Table 1 presents the performance of all four architectures. The
continuous unified tokenizer achieves the best overall performance
profile, with a reconstruction PSNR of 32.47 ± 0.88 dB, semantic
accuracy of 0.922 ± 0.004, and generation FID of 9.98 ± 1.82.

The discrete VQ-VAE achieves reasonable reconstruction (PSNR
31.75 dB) but suffers in semantic understanding (accuracy 0.740)
due to the information bottleneck imposed by quantization. The
semantic encoder excels at understanding (accuracy 0.908) but pro-
duces poor reconstructions (PSNR 17.97 dB) and generations (FID
55.20). The dual tokenizer performs well on both tasks (PSNR 29.98,
accuracy 0.880, FID 11.83) but requires two separate systems.

The continuous unified tokenizer surpasses the dual tokenizer in
all three metrics, achieving 2.49 dB higher PSNR, 0.042 higher accu-
racy, and 1.85 lower FID, while using a single unified architecture.
Figure 1 visualizes these results.

3.2 Latent Dimension Scaling
Figure 2 shows the effect of latent dimension on the continuous
unified tokenizer. Increasing dimension from 16 to 1024 improves

Figure 1: Performance comparison across four tokenizer ar-
chitectures on reconstruction quality (PSNR), understanding
(accuracy), and generation (FID).

Figure 2: Effect of latent dimension on continuous unified
tokenizer performance. All metrics improve with dimension,
following logarithmic scaling.

Figure 3: Discretization error analysis. (a) Quantization error
decreases with codebook size. (b–c) Continuous representa-
tions (dashed lines) achieve better FID and PSNR than any
discrete codebook size.

reconstruction PSNR from 31.00 to 33.23 dB, semantic accuracy
from 0.892 to 0.937, and generation FID from 12.48 to 8.72. The
improvements follow a logarithmic scaling relationship, with di-
minishing returns at higher dimensions.

3.3 Discretization Error Analysis
Figure 3 examines the inherent limitation of discrete tokenizers.
With a codebook of size 256, the mean quantization error is 0.081,
yielding FID of 11.18. Increasing the codebook to 16384 reduces the
error to 0.010, improving FID to 8.42. However, even the largest
codebook cannot match the continuous baseline FID of 8.04, demon-
strating the fundamental advantage of continuous representations.

The continuous baseline also achieves PSNR of 32.00 dB, which
exceeds the best discrete result of 31.91 dB at codebook size 16384.
This gap, while modest in PSNR, is consistent and reflects the irre-
ducible information loss from discretization.

3.4 Understanding–Generation Trade-off
Figure 4 visualizes the Pareto frontier of understanding accuracy
versus generation FID for both baseline and continuous unified
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Figure 4: Understanding–generation Pareto frontier. The con-
tinuous unified tokenizer (green) achieves a strictly domi-
nant frontier over the baseline (red).

tokenizers. Across all trade-off operating points, the continuous
unified tokenizer achieves a strictly dominant frontier: for any
given level of understanding quality, it produces better generation
quality (lower FID), and vice versa.

At the balanced operating point (𝛼 = 0.5), the baseline achieves
understanding 0.754 with FID 33.95, while the unified tokenizer
achieves understanding 0.815 with FID 25.55, representing improve-
ments of 0.061 in accuracy and 8.40 in FID simultaneously.

3.5 Token Count Scaling
Figure 5 shows the impact of increasing visual token count. At 576
tokens, understanding accuracy reaches 0.925 with FID of 11.74, but
throughput drops to 0.308 relative to the 16-token baseline. At 1024
tokens, accuracy is 0.921 and FID improves to 8.64, but throughput
falls to 0.200. This highlights the efficiency challenge: achieving
optimal quality requires many tokens, but practical deployment
demands efficiency.

4 CONCLUSION
We have presented a systematic simulation-based analysis of the
continuous unified visual tokenizer paradigm. Our results demon-
strate three key findings:

First, continuous unified tokenizers achieve superior combined
performance compared to discrete VQ-VAE (FID improvement from
18.42 to 9.98), semantic-only encoders, and even dual-tokenizer
systems (FID improvement from 11.83 to 9.98), while maintaining a
single unified architecture.

Second, continuous representations eliminate discretization er-
ror entirely, achieving a generation FID of 8.04 that discrete code-
books cannot match even at size 16384 (FID 8.42). This fundamental
advantage becomes increasingly important as quality demands
grow.

Figure 5: Token count scaling: understanding accuracy and
generation FID improve with more tokens, but throughput
decreases substantially.

Third, the understanding–generation trade-off frontier for con-
tinuous unified tokenizers is strictly dominant over baseline ap-
proaches, indicating that the continuous paradigm does not sacrifice
understanding quality for generation quality or vice versa.

The key remaining challenges include computational scaling
with token count (throughput of 0.200 at 1024 tokens) and deter-
mining optimal latent dimensions for practical deployment. Future
work should investigate architectural designs that improve the
throughput–quality trade-off and validate these findings on real-
world visual benchmarks.
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