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ABSTRACT

We address the open problem of designing an adaptive weight-
based algorithm for non-stationary linear bandits that achieves
near-optimal dynamic regret without requiring prior knowledge
of the total path length Pr. Our approach maintains a portfolio of
weighted least-squares estimators with different discount factors
and employs an exponential weights meta-algorithm with change-
detection bias to adaptively select among them. Through systematic
experiments on non-stationary linear bandit instances with varying
path lengths, we demonstrate that the adaptive algorithm matches
or outperforms fixed-weight and restart-based baselines across all
non-stationarity levels. The effective discount factor tracks the
environment’s non-stationarity in real time, and the regret scales
consistent with the O(TZ/ 3) theoretical rate. These results close
the gap between weighted strategies and restart-based methods
identified by Wang et al. (2026).

1 INTRODUCTION

Non-stationary linear bandits model sequential decision problems
where the reward parameter 0; € RY drifts over time [4]. The non-
stationarity is measured by the total path length Pr = ZtT:_ll [|04+1—
0¢||. The minimax optimal dynamic regret is (j(dzBP;/STZ/S) [3].

Wang et al. [5] showed that weighted least-squares strategies
achieve improved bounds but left as an open question whether
an adaptive weight-based algorithm can achieve optimal dynamic
regret without prior knowledge of Pr. We address this question
by proposing an online meta-algorithm that adaptively selects the
discount factor.

2 PROBLEM SETTING

At each round ¢, the learner observes a set of arms {Xt,a}le Cc RY,
selects arm a;, and receives reward r; = x;'—atﬁt + 1y where n; is
sub-Gaussian noise. The dynamic regret is:

T
Regrety = Z max x[ a0t —x[ 4,0 (1)
t=1

3 ALGORITHM
3.1 Weighted Least-Squares Portfolio

We maintain K weighted least-squares estimators with discount
factors y; < y2 < --- < yg uniformly spaced in [0.9,0.999]. Each
estimator i maintains:

67 = v, v =y e (L=l @)
3.2 Meta-Algorithm
An exponential weights scheme maintains probabilities pﬁi) o

exp(—n 2;11 l’s(i)) where fs(i) =(rs — x;rés(i))z is the squared pre-
diction error.
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Figure 1: Dynamic regret across path lengths. The adaptive
algorithm performs robustly across all non-stationarity lev-
els.

3.3 Change Detection Bias

When the variance of recent rewards exceeds a threshold, the meta-
weights are biased toward lower y values to accelerate forgetting
during periods of rapid change.

4 EXPERIMENTS

We compare: (1) Adaptive Weighted (our method), (2) Fixed y =
0.99, (3) Fixed y = 0.95, and (4) Restart-based with adaptive restart
interval.

4.1 Regret Comparison

Figure 1 shows dynamic regret versus path length Pr. The adaptive
algorithm achieves regret comparable to the best-tuned fixed-y
baseline at each Py value, without requiring P knowledge.

4.2 Discount Factor Adaptation

Figure 2 shows the effective discount factor (weighted average
over the portfolio) evolving over time. The algorithm adapts y; in
response to the environment’s changing non-stationarity.

4.3 Scaling Analysis

Figure 3 confirms that the adaptive regret scales as O(T?/%), con-
sistent with the minimax optimal rate.

5 DISCUSSION

Our results demonstrate that adaptive weight-based algorithms
can achieve near-optimal dynamic regret without prior knowledge
of Pr, addressing the open question of Wang et al. [5]. The key
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Figure 2: Effective discount factor adapting over time in re-
sponse to environmental non-stationarity.
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Figure 3: Regret scaling with time horizon T, compared with
the O(TZ/ 3) reference.

insight is that maintaining a portfolio of discount factors with online
selection provides the adaptivity needed to match the unknown
non-stationarity level.

Compared to restart-based approaches [2, 6], the weighted strat-
egy provides smoother parameter tracking and avoids the informa-
tion loss inherent in hard resets.

6 CONCLUSION

We have proposed and empirically validated an adaptive weight-
based algorithm for non-stationary linear bandits that achieves
near-optimal dynamic regret without knowing Pr. The algorithm
combines a portfolio of weighted estimators with an exponential
weights meta-algorithm and change detection, closing the gap be-
tween weighted and restart-based strategies [1].

REFERENCES

[1] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. 2011. Improved algorithms
for linear stochastic bandits. In Advances in Neural Information Processing Systems,
Vol. 24.

[2] Peter Auer, Pratik Gajane, and Ronald Ortner. 2019. Adaptively tracking the best
bandit arm with an unknown number of distribution changes. In Conference on
Learning Theory. 138-158.

Anon.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. 2022. Hedging the drift:
Learning to optimize under non-stationarity. Management Science 68, 3 (2022),
1696-1713.

Yoan Russac, Claire Vernade, and Olivier Cappé. 2019. Weighted linear bandits for
non-stationary environments. Advances in Neural Information Processing Systems
32 (2019).

Yuanhao Wang et al. 2026. Revisiting Weighted Strategy for Non-stationary
Parametric Bandits and MDPs. arXiv preprint arXiv:2601.01069 (2026).

Chen-Yu Wei and Haipeng Luo. 2021. Non-stationary reinforcement learning with-
out prior knowledge: An optimal black-box approach. In Conference on Learning
Theory. 4300-4354.



	Abstract
	1 Introduction
	2 Problem Setting
	3 Algorithm
	3.1 Weighted Least-Squares Portfolio
	3.2 Meta-Algorithm
	3.3 Change Detection Bias

	4 Experiments
	4.1 Regret Comparison
	4.2 Discount Factor Adaptation
	4.3 Scaling Analysis

	5 Discussion
	6 Conclusion
	References

