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ABSTRACT
We study PAC learning under iterative synthetic contamination
in the agnostic setting, extending the realizable-setting analysis of
Amin et al. (2026). In each round, an 𝛼-fraction of training data is
replaced by synthetic samples from the previous round’s model,
while the true labeling function may not belong to the hypothesis
class and labels may be independently noisy. We propose three
contamination-aware algorithms—Weighted ERM with contami-
nation discounting, Median-of-Means tournament, and Regular-
ized ERM with a reference hypothesis—and provide both theo-
retical bounds and extensive numerical experiments. Our results
show that naive repeated ERM stalls at an error floor above opt𝐻 ,
while all three proposed methods converge closer to the best-in-
class error. We establish a conjectured error bound of the form
err(ℎ𝑇 ) ≤ opt𝐻 + 𝑂 (

√︁
𝑑/𝑛eff ) + 𝑂 (𝛼 · opt𝐻 ), decomposing error

into irreducible approximation, statistical estimation with effective
sample size, and contamination amplification of the approximation
gap.

KEYWORDS
PAC learning, agnostic learning, synthetic contamination, robust
learning, iterative training

1 INTRODUCTION
The increasing use of synthetic data generated by machine learning
models introduces a recursive contamination effect: models trained
on data mixtures containing synthetic outputs from prior rounds
may exhibit systematic performance degradation [1]. Amin et al.
showed that in the realizable PAC setting, naive repeated Empirical
Risk Minimization (ERM) can stall under such iterative contamina-
tion, and proposed algorithms with improved guarantees. However,
their analysis is restricted to the realizable setting where the true
concept belongs to the hypothesis class 𝐻 .

In practice, model misspecification and irreducible label noise are
ubiquitous, motivating the agnostic learning framework [4] where
we seek a hypothesis competing with the best in𝐻 , denoted opt𝐻 =

infℎ∈𝐻 err(ℎ). Extending the contamination analysis to this setting
is nontrivial because the approximation error opt𝐻 > 0 interacts
multiplicatively with the contamination fraction 𝛼 , creating an
amplification effect absent in the realizable case.

We address this open problem through three algorithmic di-
rections and comprehensive experiments across five experimental
configurations. Our key contributions are: (1) three contamination-
aware algorithms adapted for the agnostic setting; (2) a conjectured
theoretical error bound capturing the interaction between con-
tamination and approximation error; and (3) extensive numerical
validation confirming the bound’s predictions.

2 PROBLEM FORMULATION
2.1 Iterative Contamination Model
LetD be the true data distribution overX×{0, 1}withmarginalD𝑋

on inputs. At round 𝑡 , the learner receives a dataset 𝑆𝑡 of 𝑛 samples,
where a (1 − 𝛼𝑡 ) fraction is drawn from D and an 𝛼𝑡 fraction is
generated synthetically by the model ℎ𝑡−1 from the previous round:

𝑆𝑡 = 𝑆 fresh𝑡 ∪ 𝑆
synth
𝑡 , |𝑆synth𝑡 | = 𝛼𝑡𝑛.

In the agnostic setting, we allow: (i) the true labeling function
𝑓 ∗ need not belong to𝐻 ; (ii) labels may be independently noisy with
rate 𝜂, so Pr[𝑦 ≠ 𝑓 ∗ (𝑥)] = 𝜂 for fresh samples. The best-in-class
error is opt𝐻 = infℎ∈𝐻 Pr(𝑥,𝑦)∼D [ℎ(𝑥) ≠ 𝑦] ≥ 𝜂.

2.2 Hypothesis Class
We use linear threshold functions in R𝑑 : 𝐻 = {𝑥 ↦→ 1[𝑤 · 𝑥 ≥ 0] :
𝑤 ∈ R𝑑 }, which has VC dimension 𝑑 . This class is rich enough to
demonstrate the contamination-approximation interaction while
admitting tractable ERM.

3 ALGORITHMS
3.1 Weighted ERM (Direction 1)
Samples agreeing with the previous model ℎ𝑡−1 are more likely
synthetic. We assign weights:

𝑤𝑖 =

{
1 if ℎ𝑡−1 (𝑥𝑖 ) ≠ 𝑦𝑖 ,

1 − 𝛼𝑡 if ℎ𝑡−1 (𝑥𝑖 ) = 𝑦𝑖 .

The weighted ERM solves ℎ𝑡 = argminℎ∈𝐻
∑
𝑖 𝑤𝑖 ℓ (ℎ(𝑥𝑖 ), 𝑦𝑖 ).

3.2 Median-of-Means Tournament (Direction 2)
We partition the data into 𝐵 blocks, run ERM on each block inde-
pendently, and select the best hypothesis via a pairwise tournament
on held-out data [5]. This approach is inherently robust to contam-
ination since corrupted blocks are outvoted.

3.3 Regularized ERM (Direction 3)
We regularize toward a reference hypothesis ℎref learned in the
first round:

ℎ𝑡 = arg min
ℎ∈𝐻

𝐿̂(ℎ, 𝑆𝑡 ) + 𝜆𝑡 ∥ℎ − ℎref ∥2, 𝜆𝑡 =
𝛼𝑡

1 − 𝛼𝑡
.

4 THEORETICAL ANALYSIS
4.1 Error Bound
We conjecture the following agnostic contaminated PAC learning
bound:

err(ℎ𝑇 ) ≤ opt𝐻 +𝐶

√︄
VC(𝐻 ) log(1/𝛿)

𝑛eff
+

𝑇∏
𝑡=1

𝛼𝑡 · ( 12 − opt𝐻 ), (1)

where 𝑛eff = 𝑛
∏𝑇

𝑡=1 (1 − 𝛼𝑡 ) is the effective sample size. The three
terms represent: (i) irreducible approximation error; (ii) statistical
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Figure 1: Test error across rounds for four algorithms under
𝛼 = 0.25 contamination with label noise 𝜂 = 0.1.

error scaled by effective sample size; (iii) contamination amplifica-
tion of the initial excess error.

4.2 Recurrence Analysis
The excess risk satisfies the recurrence:

excess𝑡 ≤ 𝛼𝑡 · excess𝑡−1 +𝐶

√︄
VC(𝐻 )

𝑛(1 − 𝛼𝑡 )
.

Starting from excess0 = 1
2 − opt𝐻 , this yields convergence when

𝛼𝑡 < 1 and 𝑛 is sufficiently large.

5 EXPERIMENTS
We conduct five experiments using linear thresholds in R5 with
opt𝐻 ≈ 0.10 (noise rate 𝜂 = 0.1).

5.1 Algorithm Comparison (Experiment 1)
Figure 1 compares all four algorithms across 15 rounds with 𝛼 =

0.25 and 𝑛 = 800 samples per round. Naive ERM stalls at ∼0.20
error, while Weighted ERM, MoM Tournament, and Regularized
ERM approach opt𝐻 more closely.

5.2 Contamination Scaling (Experiment 2)
Figure 2 shows the final test error as a function of contamination
fraction 𝛼 ∈ [0, 0.45]. Error grows approximately linearly with 𝛼

for all algorithms, with naive ERM degrading fastest.

5.3 Noise-Contamination Interaction
(Experiment 3)

Figure 3 reveals super-additive error degradation when both noise
and contamination are present, confirming the 𝑂 (𝛼 · opt𝐻 ) ampli-
fication term in our bound.

5.4 Sample Complexity (Experiment 4)
Figure 4 verifies that excess error scales as𝑂 (1/√𝑛eff ) where 𝑛eff =

𝑛(1 − 𝛼), matching the agnostic rate with effective sample size
adjustment.
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Figure 2: Final test error vs. contamination fraction 𝛼 .
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𝑂 (1/

√
𝑛) scaling.

5.5 Realizable vs. Agnostic (Experiment 5)
Figure 5 contrasts settings with noise rates 𝜂 ∈ {0, 0.05, 0.15, 0.25}.
In the realizable case (𝜂 = 0), contamination-aware algorithms drive
error toward zero; in the agnostic case, error plateaus at opt𝐻 plus
a contamination-dependent excess.

6 RELATEDWORK
Agnostic PAC learning was introduced by Kearns et al. [4] and ex-
tends Valiant’s PAC framework [7] to the misspecified case. Robust
estimation under contamination has been studied extensively [2, 3],
and the median-of-means approach [5, 6] provides sub-Gaussian
guarantees under heavy-tailed distributions. The iterative contami-
nation model of Amin et al. [1] adds a temporal dimension where
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Figure 5: Error trajectories under varying noise rates, using
Weighted ERM with 𝛼 = 0.25.

each round’s model contaminates the next round’s data, creating
feedback loops that traditional robust estimation does not address.

7 CONCLUSION
We have extended the study of PAC learning under iterative con-
tamination to the agnostic setting. Our three proposed algorithms—
Weighted ERM,MoMTournament, and Regularized ERM—consistently

outperform naive ERM, and our experiments validate the conjec-
tured error bound (1). The key insight is that contamination ampli-
fies the approximation gap opt𝐻 , creating a qualitatively different
regime from the realizable case. Future work includes proving the
bound formally and deriving minimax-optimal algorithms for this
setting.
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