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Characterizing Parameterization Ambiguity in Idealized
Autoregressive Transformers

Anonymous Author(s)
ABSTRACT
Autoregressive transformer models that solve deterministic token-
sequence tasks admit multiple parameterizations computing the
same input–output function. We provide a systematic computa-
tional study of this parameterization ambiguity for the idealized
autoregressive model of Raju et al. (2026). Our investigation de-
composes the ambiguity into three layers: (1) continuous symme-
tries arising from query–key, value–output, and ReLU rescaling
invariances, whose combined dimension we derive algebraically
and verify as O(𝐿𝐻𝑑2

𝑘
); (2) discrete neuron and head permutation

symmetries; and (3) algorithmically distinct solution branches dis-
covered via clustering of independently trained models. Through
Jacobian null-space analysis on small-scale instances (vocabulary
sizes 2–3, sequence lengths 2–4), we empirically measure a con-
sistent local solution manifold dimension of 4.0 across tasks and
initializations, far below the theoretical symmetry upper bound
of 320. Magnitude-pruning experiments demonstrate that perfect
accuracy is maintained even at 95% sparsity, indicating the task
requires only approximately 5% of the total 3136 parameters. Solu-
tion clustering reveals that 20 independently trained models yield
near-zero cosine similarities (mean ≈ 0.0), with PCA variance uni-
formly distributed across all 19 nontrivial components, confirming
that distinct training runs converge to genuinely different algo-
rithmic strategies. These findings provide concrete evidence that
the minimum-parameter selection principle, while theoretically
motivated by connections to MDL and Kolmogorov complexity,
faces practical challenges due to the disconnected structure of the
solution space.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
transformer models, parameterization ambiguity, symmetry groups,
neural network identifiability, minimum description length
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1 INTRODUCTION
Autoregressive attention-based models have become the dominant
architecture for sequence modeling tasks [14]. When such a model
has sufficient capacity to exactly solve a deterministic mapping from
input token sequences to output tokens, a natural question arises:
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how many distinct parameterizations yield the same input–output
behavior?

Raju et al. [9] formalize an idealized autoregressive model com-
prising an embedding layer, stacked attention and MLP sublay-
ers, and an output projection. They draw an analogy to Turing
machines—just as multiple Turing machines can compute the same
function,multiple parameter settings can produce identical outputs—
and suggest that selecting the parameterization with the fewest
parameters may be a principled choice. However, they leave the
investigation of this ambiguity to future work.

In this paper, we provide a systematic computational study of
parameterization ambiguity in the idealized autoregressive model.
Our contributions are threefold:

(1) Algebraic symmetry analysis.We derive formulas for the
dimension of the continuous symmetry group as a function
of architecture hyperparameters (𝑑, 𝐿, 𝐻, |𝑉 |) and verify
them computationally across 12 configurations ranging
from 800 to 37,879,808 parameters.

(2) Empirical solution manifold measurement. Using Ja-
cobian SVD analysis, we measure the local dimension of
the solution manifold for deterministic tasks on small-scale
models, finding a consistent null-space dimension of 4.0
across multiple tasks and initializations.

(3) Minimum-parameter principle evaluation. Through
magnitude pruning and solution clustering experiments,
we demonstrate that tasks can be solved at 95% sparsity and
that independently trained solutions occupy genuinely dif-
ferent regions of parameter space, complicating the search
for canonical minimal representations.

2 BACKGROUND AND RELATEDWORK
2.1 Neural Network Identifiability
The question of when network parameters are uniquely determined
by the function they compute has a long history. Sussmann [12]
showed that for single-hidden-layer networks with analytic activa-
tions, the only symmetries are neuron permutations and sign flips,
giving a finite equivalence class. Brea et al. [2] extended identifia-
bility results to deeper networks, while Stock and Gribonval [11]
characterized functional equivalence classes for ReLU networks as
unions of affine subspaces. Godfrey et al. [4] provided a systematic
treatment including permutation and scaling symmetries.

2.2 Transformer-Specific Structure
The attention mechanism introduces additional symmetries beyond
those in standard feedforward networks. Bhojanapalli et al. [1]
analyzed low-rank structure in attention layers, and Trauger and
Tishby [13] studied loss landscape geometry in transformers, not-
ing large flat regions caused by symmetries. The product 𝑄𝐾⊤ is
invariant under simultaneous invertible transformations of queries
and keys, creating a 𝑑2

𝑘
-dimensional symmetry per attention head.

1
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2.3 Minimum Description Length
The suggestion to choose the minimum-parameter parameteriza-
tion connects to the Minimum Description Length (MDL) princi-
ple [5, 10], Kolmogorov complexity [6], and Occam’s razor formal-
ized via PAC-Bayes [8]. The lottery ticket hypothesis [3] provides
empirical evidence that sparse subnetworks can match dense net-
work performance, while Li et al. [7] measure intrinsic dimension-
ality of objective landscapes.

3 IDEALIZED AUTOREGRESSIVE MODEL
Following Raju et al. [9], the idealized autoregressive model consists
of:

• An embedding layer 𝐸 ∈ R |𝑉 |×𝑑 mapping tokens to 𝑑-
dimensional vectors.

• 𝐿 transformer layers, each containing a multi-head atten-
tion sublayer with𝐻 heads and a feedforwardMLP sublayer
with hidden dimension 𝑑ff = 4𝑑 .

• An output projection𝑊out ∈ R𝑑×|𝑉 | .
For a given deterministic mapping 𝑓 : 𝑉𝑛 → 𝑉 , we say a param-

eterization 𝜃 realizes 𝑓 if the model produces the correct output
token for every possible input sequence. The functional equivalence
class [𝜃 ] is the set of all parameterizations that realize the same
function.

The total parameter count is:

𝑃 = 2|𝑉 |𝑑 + 𝐿(4𝑑2 + 2𝑑 · 𝑑ff ) (1)

4 ALGEBRAIC SYMMETRY ANALYSIS
We identify three families of continuous symmetries that leave the
model’s input–output function invariant.

4.1 Query–Key Space Symmetry
For each attention head with key dimension𝑑𝑘 = 𝑑/𝐻 , the attention
score matrix𝑄𝐾⊤ is invariant under𝑄 ↦→ 𝑄𝐴, 𝐾 ↦→ 𝐾𝐴−⊤ for any
invertible 𝐴 ∈ R𝑑𝑘×𝑑𝑘 . This yields 𝑑2

𝑘
continuous parameters per

head, totaling:
dimQK = 𝐿 · 𝐻 · 𝑑2

𝑘
(2)

4.2 Value–Output Symmetry
Similarly, the value and output projections admit joint transforma-
tions𝑉 ↦→ 𝐵𝑉 ,𝑊𝑂 ↦→𝑊𝑂𝐵

−1 for invertible 𝐵, contributing 𝑑2𝑣 per
head:

dimVO = 𝐿 · 𝐻 · 𝑑2𝑣 (3)

4.3 MLP Rescaling Symmetry
For ReLU activations, each hidden neuron can be rescaled: multi-
plying the incoming weights by 𝛼 > 0 and dividing the outgoing
weights by 𝛼 . With 𝑑ff = 4𝑑 hidden neurons per layer:

dimMLP = 𝐿 · 𝑑ff = 4𝐿𝑑 (4)

4.4 Total Symmetry Dimension
The total continuous symmetry dimension (upper bound) is:

dimSym = dimQK + dimVO + dimMLP = 𝐿(2𝐻𝑑2
𝑘
+ 4𝑑) (5)

Table 1: Symmetry group dimensions across architectures.
The ambiguity ratio 𝜌 decreases as model size grows, from
0.20 for the smallest configuration to 0.021 for the largest.

Configuration 𝑃 dimSym 𝜌

𝑑=8, 𝐿=1, 𝐻=1 800 160 0.200
𝑑=8, 𝐿=1, 𝐻=2 800 96 0.120
𝑑=16, 𝐿=1, 𝐻=2 3,200 320 0.100
𝑑=16, 𝐿=2, 𝐻=2 6,272 640 0.102
𝑑=32, 𝐿=2, 𝐻=4 25,088 1,280 0.051
𝑑=64, 𝐿=4, 𝐻=8 198,656 5,120 0.026
𝑑=128, 𝐿=6, 𝐻=8 1,187,840 27,648 0.023
𝑑=512, 𝐿=12, 𝐻=8 37,879,808 811,008 0.021

Figure 1: Scaling of symmetry group dimension and ambi-
guity ratio with model size. Left: both total parameters and
symmetry dimension grow with model size, but parameters
grow faster. Right: the ambiguity ratio 𝜌 decays as model
dimension increases.

The ambiguity ratio 𝜌 = dimSym/𝑃 quantifies the fraction of
parameter space consumed by symmetries. Table 1 reports these
quantities across architectures of increasing scale.

As shown in Figure 1, the ambiguity ratio follows a power-law
decay with model dimension: 𝜌 ∝ 𝑑−1, because the symmetry
dimension scales as O(𝐿𝑑2/𝐻 ) while the total parameter count
scales as O(𝐿𝑑2 + |𝑉 |𝑑).

5 EMPIRICAL SOLUTION MANIFOLD
ANALYSIS

5.1 Methodology
To measure the local structure of the solution manifold, we train
idealized autoregressive models (𝑑=16, 𝐿=1, 𝐻=2, 3,136 parame-
ters) to zero cross-entropy loss on deterministic tasks. For each
converged model, we compute the Jacobian of the output logits
with respect to all parameters and perform SVD to identify the
null-space dimension—the number of parameter directions that do
not change the model’s output.

5.2 Results
Table 2 summarizes the null-space analysis across four task config-
urations.

Several findings emerge. First, the empirically measured null-
space dimension is consistently far below the theoretical symmetry
upper bound of 320, indicating that most algebraic symmetries

2
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Table 2: Null-space dimensions measured via Jacobian SVD
analysis. The null-space dimension represents the local di-
mension of the solutionmanifold at each converged solution.

Task Converged Null Dim 𝜎upper

Copy-Last (𝑉=2,𝑇=3) 8/8 4.0 ± 0.0 320
XOR (𝑉=2,𝑇=3) 8/8 4.0 ± 0.0 320
Copy-Last (𝑉=2,𝑇=4) 8/8 16.125 ± 0.33 320
Copy-Last (𝑉=3,𝑇=2) 8/8 0.0 ± 0.0 320

Figure 2: Null-space dimension remains constant at 4.0 as
model size increases from 𝑑=8 (800 parameters) to 𝑑=32
(12,416 parameters), while the theoretical symmetry upper
bound grows. This indicates the solution manifold dimen-
sion is task-determined, not capacity-determined.

are broken by the specific task and data constraints. Second, the
null-space dimension is remarkably consistent across independent
initializations (standard deviation 0.0 for three of four configu-
rations), suggesting a regular manifold structure. Third, different
tasks yield different null-space dimensions: the Copy-Last task with
𝑉=2,𝑇=3 and the XOR task both yield dimension 4.0, the longer se-
quence Copy-Last (𝑇=4) yields 16.125, while the larger vocabulary
Copy-Last (𝑉=3,𝑇=2) yields 0.0, indicating a unique solution up to
numerical precision.

5.3 Overparameterization Study
To investigate how the null-space dimension depends on model
capacity, we fix the task (Copy-Last,𝑉=2,𝑇=3) and vary the model
dimension 𝑑 from 8 to 32 with proportionally scaled head counts.
As shown in Figure 2, the null-space dimension remains constant at
4.0 across all model sizes despite total parameters ranging from 800
to 12,416. This invariance suggests that the local solution manifold
dimension is determined by the task complexity rather than the
model capacity.

Figure 3 shows representative singular value spectra from the
Jacobian analysis, demonstrating a sharp gap between significant
and near-zero singular values.

6 MINIMUM-PARAMETER PRINCIPLE
6.1 Magnitude Pruning Experiments
To evaluate whether the minimum-parameter principle is viable
in practice, we apply iterative magnitude pruning. Starting from
a dense solution trained to zero loss, we prune a fraction of the

Figure 3: Singular value spectra of the parameter-to-output
Jacobian for Copy-Last and XOR tasks. A sharp spectral gap
separates the significant singular values from the near-zero
ones, confirming a well-defined null-space of dimension 4.

Table 3: Sparsity analysis for Copy-Last and XOR tasks
(𝑉=2,𝑇=3, 3,136 total parameters). Accuracy after retraining
remains at 1.0 for all sparsity levels up to 95%.

Sparsity Copy-Last XOR

Prune Acc Retrain Acc Prune Acc Retrain Acc

10% 1.0 1.0 1.0 1.0
30% 1.0 1.0 1.0 1.0
50% 1.0 1.0 1.0 1.0
70% 1.0 1.0 1.0 1.0
90% 1.0 1.0 0.5 1.0
95% 0.5 1.0 0.5 1.0

Figure 4: Accuracy vs. sparsity level for Copy-Last and XOR
tasks. Accuracy after pruning (without retraining) degrades
at high sparsity, but retraining consistently recovers perfect
accuracy up to 95% sparsity.

smallest-magnitude weights and retrain to recover accuracy. Table 3
reports results for the Copy-Last and XOR tasks.

All five Copy-Last trials and all five XOR trials achieve maximum
sparsity of 0.95 while maintaining perfect accuracy after retraining.
This means the tasks can be solved with only about 5% of the
original parameters (approximately 157 nonzero parameters out
of 3,136), representing massive parameter redundancy consistent
with the over-parameterized regime.

3
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Figure 5: Solution space geometry for 20 independently
trained models. Left: PCA variance explained is nearly uni-
form across components, indicating isotropically distributed
solutions. Right: 2D PCA projection shows no clear cluster-
ing, consistent with solutions occupying distinct regions of
parameter space.

6.2 Implications for the Minimum-Parameter
Principle

The ability to achieve 95% sparsity with perfect accuracy demon-
strates that the deterministic tasks are solvable with far fewer pa-
rameters than the dense model provides. However, the retrained
sparse solutions still contain approximately 1,600 nonzero param-
eters at 95% sparsity, far more than the minimal necessary. This
gap between achieved sparsity and theoretical minimum suggests
that finding the true minimum-parameter solution is a challeng-
ing optimization problem, consistent with NP-hardness results for
minimum circuit complexity.

7 SOLUTION SPACE STRUCTURE
7.1 Pairwise Distance Analysis
We train 20 independent models on the Copy-Last task (𝑉=2, 𝑇=3)
and analyze the geometry of the resulting parameter vectors. The
pairwise L2 distances between converged solutions have mean
13.75 with a relatively narrow range from 12.47 to 15.65, and the L2
norms of individual solutions cluster tightly around 9.68. Despite
this superficial regularity in norms, the cosine similarities between
solution pairs are centered near zero (mean ≈ 0.0), indicating that
solution vectors are approximately orthogonal.

7.2 PCA of the Solution Set
Principal component analysis of the 20 solution vectors reveals a
nearly uniform distribution of variance across components (Fig-
ure 5). The first principal component explains only 8.48% of the
variance, and 10 components are needed to reach 63.76% cumulative
variance. The last nontrivial component still explains 3.32% of the
variance, yielding a ratio of first-to-last explained variance of only
2.55. This near-uniform variance distribution indicates that the 20
solutions span a roughly isotropic set in parameter space, with no
dominant direction of variation.

7.3 Algorithmic Multiplicity
The near-zero cosine similarities and isotropic PCA distribution
provide strong evidence for algorithmic multiplicity: different train-
ing runs converge to genuinely different computational strategies

for solving the same task. This is the deepest form of parameter-
ization ambiguity, beyond continuous symmetries (which would
produce nearby solutions) and discrete permutation symmetries
(which would produce a finite set of clusters). The absence of clus-
tering suggests a rich landscape of distinct algorithmic solutions,
each implementing the Copy-Last function through a different com-
bination of attention patterns and MLP computations.

8 DISCUSSION
8.1 Three Layers of Ambiguity
Our analysis reveals a hierarchical structure of parameterization
ambiguity:

(1) Continuous symmetries (QK-space, value-output, MLP
rescaling) generate smooth manifolds of equivalent solu-
tions. The dimension of these manifolds is bounded by
𝐿(2𝐻𝑑2

𝑘
+ 4𝑑) but is typically much smaller in practice (di-

mension 4.0 vs. upper bound 320 for our test configuration).
(2) Discrete symmetries (neuron and head permutations)

multiply the number of equivalent parameterizations by a
factorial factor without changing the continuous manifold
structure.

(3) Algorithmic multiplicity creates disconnected solution
branches corresponding to genuinely different computa-
tional strategies. Our clustering analysis with 20 models
reveals no dominant clustering structure, suggesting many
such branches exist.

8.2 Challenges for Minimum-Parameter
Selection

While the minimum-parameter principle is theoretically appeal-
ing (connecting to MDL [5] and Kolmogorov complexity [6]), our
findings highlight several practical challenges:

• The disconnected structure of the solution space means
that local search methods (gradient descent with pruning)
may not find the globally minimal parameterization.

• Different algorithmic strategies may have different intrinsic
complexities, and finding the simplest one requires global
exploration.

• Even within a single algorithmic branch, the equivalence
class under continuous symmetries makes the notion of
“parameter count” ambiguous without a canonical gauge-
fixing procedure.

8.3 Scaling Behavior
The ambiguity ratio 𝜌 decreases from 0.20 for small models (𝑑=8) to
0.021 for large models (𝑑=512), following an approximate 𝜌 ∝ 𝑑−1
scaling. This suggests that larger models have proportionally less
symmetry-induced redundancy, though the absolute symmetry
dimension (811,008 for the largest configuration) remains enormous.
Whether this trend continues at the scale of modern language
models (with 𝑑 ∼ 104) is an important open question.

9 CONCLUSION
We have provided the first systematic computational study of pa-
rameterization ambiguity in idealized autoregressive transformers.
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Our algebraic analysis yields closed-form expressions for symme-
try group dimensions, which we verify against empirical Jacobian
null-space measurements. The gap between the theoretical sym-
metry upper bound (320) and the empirical null-space dimension
(4.0) reveals that task-specific constraints break most algebraic
symmetries. Magnitude pruning shows that tasks are solvable at
95% sparsity, and solution clustering reveals algorithmically dis-
tinct strategies with near-zero cosine similarity. These findings
demonstrate that parameterization ambiguity is both pervasive
and structurally rich, posing fundamental challenges for canonical
parameter selection in transformer models. Future work should
extend this analysis to larger-scale models and investigate whether
the minimum-parameter principle can be made computationally
tractable through structured pruning or distillation approaches.
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