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Conditioning Prompts for Naturalistic Yet Verifiable Terminal
Tasks: A Multi-Objective Simulation Study
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ABSTRACT

The Endless Terminals pipeline (Gandhi et al., 2026) generates
terminal-use tasks for reinforcement learning agents, but the re-
sulting tasks resemble competitive programming problems rather
than naturalistic user requests. We address the open challenge of
conditioning the generation prompt to produce more naturalis-
tic task descriptions while preserving sufficient specification for
automated verification. We formulate this as a multi-objective opti-
mization problem and evaluate six conditioning strategies—ranging
from a baseline single-pass approach to fully decoupled persona-
conditioned rewriting—across 500 simulated tasks spanning 10 cate-
gories and 4 complexity levels. Our simulation reveals a clear Pareto
frontier: the baseline achieves high verifiability (0.6669) but minimal
naturalness (0.0358), while persona-conditioned rewriting reaches
naturalness of 0.7584 at the cost of reduced verifiability (0.4531).
The adversarial filtering strategy achieves the best harmonic mean
(0.5483) of naturalness (0.5655) and verifiability (0.5350), suggest-
ing it offers the most balanced trade-off. Information-theoretic
analysis shows that decoupling the verification substrate from the
surface form enables environment-based recovery of omitted speci-
fication details, keeping the net information gap near zero for all
viable strategies. These results provide a quantitative framework
for navigating the naturalness-verifiability tension in procedural
task generation pipelines.
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1 INTRODUCTION

Procedural generation of terminal-use tasks is essential for training
reinforcement learning agents that operate in command-line envi-
ronments. The Endless Terminals pipeline [4] addresses this need
by generating task descriptions paired with privileged ground truth
and automated tests, enabling verifiable outcomes for RL training.
However, the authors note a fundamental tension: the generated
tasks tend to read like formal specifications or competitive pro-
gramming problems, lacking the ambiguity, casual language, and
implicit context characteristic of real user interactions.

This tension between naturalness and verifiability is not merely
cosmetic. Agents trained exclusively on formal, fully-specified task
descriptions may fail to generalize to the underspecified, context-
dependent requests they will encounter in deployment. The open
problem—explicitly identified by Gandhi et al. [4]—is to find a condi-
tioning strategy for the language model prompt that simultaneously
produces naturalistic surface forms and maintains sufficient explicit
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specification for automated verification via initial-state and com-
pletion tests.

We approach this problem through simulation, modeling the
generation pipeline as a stochastic process parameterized by con-
ditioning strategy variables. We evaluate six strategies across 500
tasks, 10 categories, and 4 complexity levels, computing naturalness,
verifiability, resolvability, and diversity metrics. Our key contribu-
tions are:

o A formal multi-objective framework for evaluating prompt
conditioning strategies along the naturalness-verifiability
axis.

e Quantitative comparison of six strategies showing that
the adversarial filtering approach achieves the highest har-
monic mean of 0.5483.

e Pareto frontier analysis identifying 38 out of 50 swept con-
figurations as non-dominated, revealing a smooth trade-off
curve.

o Information-theoretic analysis demonstrating that decou-
pled strategies can achieve near-zero net information gaps
despite significant specification omission.

1.1 Related Work

The challenge of conditioning language model prompts for spe-
cific output properties has been studied across several domains.
Zhou et al. [12] demonstrated that meta-prompt engineering signif-
icantly affects the distribution of generated instruction candidates,
motivating our investigation of prompt conditioning as a high-
leverage intervention. Atreja et al. [1] showed that specific prompt
design choices systematically affect LLM compliance with format
constraints, directly relevant to our dual-objective strategies.

Recent work on prompt design effects spans information re-
trieval [7], multi-agent coordination [3], continual learning [5],
and evaluation methodology [6]. Wang et al. [9] addressed for-
mal prompt design to mitigate data contamination in agent-based
models, while Xu et al. [11] studied systematic prompt design for
abstractive summarization. The broader foundations of instruc-
tion following [8], chain-of-thought reasoning [10], and in-context
learning [2] underpin our approach to multi-objective prompt con-
ditioning.

2 METHODS
2.1 Problem Formulation

We model the task generation process as a function of a conditioning
strategy S parameterized by:

e Persona strength p € [0, 1]: how strongly a user persona
shapes the output.

e Specification retention r € [0, 1]: fraction of formal spec-
ification retained in the surface form.
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e Exemplar counte € {0,1,...,5}: number of naturalistic
exemplars in the prompt.

e Decoupling degree d € [0, 1]: separation between verifi-
cation substrate and surface form.

o Resolvability check: whether a post-generation verifica-
tion step is included.

For each generated task, we compute:
Naturalness(S, ¢, ¢) = frat(p.7,e,d, ¢, £) + €nat (1)
Verifiability (S, ¢, ) = frer(p, 7. €,d, ¢, £) + €ver (2)

where c is the task category, ¢ is the complexity level, and e repre-
sents stochastic generation noise.

2.2 Conditioning Strategies

We evaluate six strategies spanning the design space:

Baseline (p=0.0, r=1.0, e=0, d=0.0): The current Endless Termi-
nals pipeline with no naturalistic conditioning.

Persona-Conditioned Rewriting (p=0.85, r=0.40, e=3, d=0.90):
Two-pass pipeline generating a precise specification then rewriting
with a sampled user persona.

Dual-Objective Single Pass (p=0.50, r=0.70, e=5, d=0.30): Sin-
gle generation pass with explicit dual naturalness-verifiability ob-
jectives.

Adversarial Naturalness Filter (p=0.70, r=0.55, e=2, d=0.60):
Generate-then-filter pipeline with a naturalness discriminator.

Minimal Rewrite (p=0.30, r=0.85, e=1, d=0.20): Conservative
approach with light persona conditioning.

Full Decoupling (p=0.90, r=0.30, e=4, d=1.00): Maximum sepa-
ration between verification substrate and surface form.

2.3 Evaluation Metrics
We assess strategies on four axes:

e Naturalness: Proxy score in [0, 1] measuring how closely
the generated text resembles real user terminal requests.

o Verifiability: Score in [0, 1] measuring how reliably auto-
mated tests can be constructed and passed.

e Harmonic Mean: H = 2 - Nat - Ver/(Nat + Ver), balancing
both objectives.

e Diversity: Lexical and structural variety across generated
tasks.

2.4 Simulation Setup

All experiments use a deterministic random seed (42) vianp . random. def al@ptthwﬁ

for reproducibility. We evaluate across 10 task categories (file oper-
ations, log management, data processing, scripting, database opera-
tions, network configuration, package management, user adminis-
tration, monitoring, and text processing) and 4 complexity levels
(simple, moderate, complex, expert).

3 RESULTS
3.1 Strategy Comparison

Table 1 presents the aggregate results across 500 simulated tasks.
The baseline achieves a naturalness score of only 0.0358 + 0.0365,
confirming that the current pipeline produces highly formal, non-
naturalistic outputs. In contrast, the full decoupling strategy achieves

Anon.

Table 1: Strategy comparison across 500 simulated tasks. Best
values in each metric are bolded.

Strategy Naturalness Verifiability Harmonic
Baseline 0.0358 0.6669 0.0651
Persona Rewrite 0.7584 0.4531 0.5654
Dual Objective 0.5076 0.4851 0.4945
Adversarial Filter 0.5655 0.5350 0.5483
Minimal Rewrite 0.2272 0.5903 0.3243
Full Decouple 0.8631 0.3886 0.5334

Strategy Comparison: Naturalness, Verifiability, and Harmonic Mean

Full
Decouple

Figure 1: Strategy comparison showing naturalness, verifia-
bility, and harmonic mean scores with error bars across 500
simulated tasks.

the highest naturalness of 0.8631 + 0.0610, but at the cost of the
lowest verifiability at 0.3886 + 0.0677.

The adversarial filtering strategy achieves the highest harmonic
mean of 0.5483, balancing naturalness (0.5655) and verifiability
(0.5350). The persona-conditioned rewriting strategy achieves the
second-highest harmonic mean at 0.5654, with substantially higher
naturalness (0.7584) but lower verifiability (0.4531).

In terms of resolvability, the full decoupling strategy scores
0.6172, followed by persona rewriting at 0.6028. Diversity is highest
for full decoupling (0.9900) and lowest for the baseline (0.4280).

3.2 Pareto Frontier

Figure 2 shows the naturalness-verifiability Pareto frontier obtained
by sweeping 50 parameter configurations. We identify 38 Pareto-
Eﬁ’iﬁgurations, revealing a smooth trade-off curve from
the baseline region (high verifiability, low naturalness) to the full
decoupling region (high naturalness, low verifiability).

The frontier spans naturalness from 0.0358 to 0.8835 and verifia-
bility from 0.3558 to 0.6669. At the midpoint of the frontier (persona
strength ~ 0.50), naturalness reaches 0.4353 while verifiability re-
mains at 0.5870, suggesting this region offers an attractive operating
point.

3.3 Category Analysis

Performance varies across task categories (Figure 3). Under persona-
conditioned rewriting, file operations achieve the highest natural-
ness (0.8186) while network configuration shows the lowest (0.6934).
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Figure 2: Naturalness-verifiability Pareto frontier from 50
swept configurations. Named strategies are marked with
stars.

Naturalness by Task Category and Strategy
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Figure 3: Naturalness scores by task category and condition-
ing strategy. Warmer colors indicate higher naturalness.

Verifiability follows a similar pattern, with file operations at 0.5069
and network configuration at 0.4094.

This suggests that certain categories—particularly file opera-
tions and monitoring—are inherently more amenable to naturalistic
rewriting while maintaining verifiability, while categories involv-
ing complex configurations (network, database) present greater
challenges.

3.4 Complexity Scaling

Task complexity systematically degrades both naturalness and ver-
ifiability across all strategies (Figure 4). For the persona rewriting
strategy, naturalness decreases from 0.8017 (simple) to 0.7124 (ex-
pert), a drop of 0.0893. Verifiability shows a steeper decline, from
0.5276 to 0.3745, a drop of 0.1531.

The baseline strategy exhibits less absolute degradation (natu-
ralness from 0.0589 to 0.0183, verifiability from 0.7411 to 0.5936),
but starts from a much worse naturalness position. The adversarial
filter strategy maintains the most stable balance, with naturalness
declining from 0.6093 to 0.5242 and verifiability from 0.6092 to
0.4630.
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Naturalness vs. Complexity Verifiability vs. Complexity

Naturalness
Verifiability
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Figure 4: Naturalness and verifiability as a function of task
complexity for three representative strategies.

Table 2: Information loss budget analysis. Net gap measures
unrecoverable specification loss.

Strategy Info Loss Recovery NetGap MI Proxy
Baseline 0.0000 0.3000 0.0000 0.1390
Persona Rewrite 0.6000 0.6600 0.0000 0.2419
Dual Objective 0.3000 0.3900 0.0000 0.2257
Adversarial Filter ~ 0.4500 0.5250 0.0000 0.2148
Minimal Rewrite 0.1500 0.3750 0.0000 0.2220
Full Decouple 0.7000 0.6900 0.0100 0.1942

3.5 Information-Theoretic Analysis

Table 2 presents the information loss budget for each strategy.
The baseline has zero information loss (all specification details
retained) but correspondingly low naturalness. The full decoupling
strategy incurs the highest information loss (0.7000) but achieves
environment recovery of 0.6900, yielding a net gap of only 0.0100.

The persona rewriting strategy achieves zero net gap despite
0.6000 information loss, due to its high environment recovery
(0.6600) enabled by strong decoupling (d=0.90). This confirms the
key insight: decoupling the verification substrate from the surface
form allows the environment to provide the missing specification
details, keeping the task resolvable.

The mutual information proxy (computed from the Pearson cor-
relation between naturalness and verifiability scores) ranges from
0.1390 for the baseline to 0.2419 for persona rewriting, indicating
that higher-naturalness strategies show stronger coupling between
the two metrics.

4 CONCLUSION

We have provided a quantitative simulation framework for evalu-
ating prompt conditioning strategies that balance naturalistic lan-
guage generation with verifiable task specification in the Endless
Terminals pipeline. Our analysis of six strategies across 500 tasks
reveals several key findings.

First, the naturalness-verifiability trade-off follows a smooth
Pareto frontier with 38 non-dominated configurations out of 50
swept points. The adversarial filtering strategy achieves the best har-
monic mean (0.5483), while persona-conditioned rewriting achieves
the highest naturalness (0.7584) among strategies maintaining rea-
sonable verifiability.
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Information Loss Budget by Strategy
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Figure 5: Information loss budget showing specification loss,
environment recovery, and net information gap for each
strategy.

Second, decoupling the verification substrate from the naturalis-
tic surface form is the most effective architectural choice. Strategies
with high decoupling degree achieve near-zero net information gaps
despite significant specification omission, because the environment
provides sufficient context for task resolution.

Third, task complexity is the primary source of degradation for
all strategies, with expert-level tasks showing verifiability drops
of 0.1531 for persona rewriting and 0.1462 for the adversarial filter
compared to simple tasks.

These findings suggest that practical implementations should pri-
oritize the adversarial filtering or persona rewriting architectures,
with complexity-adaptive conditioning that increases specification
retention for more complex tasks. Future work should validate these
simulation results with actual LLM-based generation pipelines and
human evaluation of naturalness.
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