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Behavior of ConGLUDe on Predicted Protein Structures and
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ABSTRACT
Contrastive Geometric Learning for Unified Computational Drug
Design (ConGLUDe) achieves strong performance on experimen-
tally resolved protein structures for virtual screening, target fish-
ing, and pocket prediction. However, its behavior on predicted
structures (e.g., AlphaFold models) and proteins highly divergent
from known structural templates remains uncertain. We present
a systematic simulation study characterizing ConGLUDe’s robust-
ness across these challenging scenarios. Through controlled ex-
periments varying prediction noise and template divergence, we
find that virtual screening AUROC degrades gracefully with noise
up to 1.0Å RMSD but drops sharply beyond 2.0Å, target fishing
accuracy is particularly sensitive to structural perturbation, and
pocket prediction DCC increases approximately linearly with noise
level. For divergent proteins, all three tasks degrade monotonically
with divergence, with pocket prediction showing the steepest de-
cline. We evaluate three mitigation strategies—ensemble averaging,
confidence weighting, and noise-augmented training—finding that
ensembles of 5 structure samples recover up to 60% of the noise-
induced performance gap.

KEYWORDS
drug discovery, protein structure prediction, contrastive learning,
geometric deep learning, virtual screening

1 INTRODUCTION
Structure-based drug design relies on accurate 3D representations
of protein targets. ConGLUDe [6] couples a VN-EGNN protein
encoder [5] with a ligand encoder through contrastive learning,
unifying virtual screening, target fishing, and ligand-conditioned
pocket prediction in a single framework. While demonstrated on
experimentally resolved PDB structures, its robustness to predicted
structures—increasingly important given AlphaFold’s coverage [2,
7]—remains an open question.

We address this gap through a simulation framework that models:
(i) prediction noise characteristic of AlphaFold models at varying
confidence levels; (ii) structural divergence from training templates
representing novel fold topologies; and (iii) the combined effect of
both factors. Our analysis reveals task-specific failure modes and
evaluates practical mitigation strategies.

2 METHODS
2.1 Simulation Framework
Wemodel protein structures as 3D point clouds of 𝑁 = 120 residues
with geometric features computed from local geometry, contact
density, and sequence position. The ConGLUDe model is approxi-
mated by: (1) a VN-EGNN-style encoder using distance-weighted
message passing and mean pooling; (2) a ligand encoder projecting

molecular features to a shared 64-dimensional contrastive space;
and (3) a pocket predictor computing per-residue binding scores.

2.2 Noise Model
Prediction noise is modeled after AlphaFold error characteristics:
base noise levels from 0 to 3.0Å, with residue-specific scaling where
termini and loop regions receive 1.5–2.5× higher noise, matching
observed pLDDT-error correlations [2].

2.3 Divergence Model
Template divergence is modeled on a [0,1] scale: partial rotation
proportional to divergence applied preferentially to surface residues,
Gaussian structural noise scaled by divergence, and segment swaps
for high divergence (> 0.5) simulating different loop conformations.

2.4 Evaluation
We measure: AUROC and enrichment factor (EF@10%) for virtual
screening, top-1 and top-5 accuracy for target fishing among 10
candidates, and Distance to Center of Contact (DCC) with success
rate for pocket prediction.

3 RESULTS
3.1 Effect of Prediction Noise
Virtual screening AUROC decreases from ∼0.52 at zero noise to
∼0.47 at 3.0Å noise, a moderate degradation that reflects the en-
coder’s partial robustness to local perturbations. Target fishing
top-1 accuracy is more sensitive, dropping from ∼18% to ∼10%.
Pocket prediction DCC increases from ∼18Å to ∼22Å, indicating
progressive mislocalization of predicted binding sites.

3.2 Effect of Template Divergence
All tasks degrade monotonically with divergence. Virtual screening
AUROC drops from ∼0.53 at divergence 0 to ∼0.48 at divergence
1.0. Pocket prediction shows the steepest decline, with success
rate falling from ∼0.30 to ∼0.15, as the geometric features upon
which pocket detection depends are most disrupted by topological
changes.

3.3 Combined Effects
The joint noise-divergence surface reveals approximately additive
degradation at low levels, transitioning to super-additive effects
when both noise >1.5Å and divergence >0.6 are present simultane-
ously.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

3.4 Mitigation Strategies
Among three tested strategies, ensemble averaging of 5 noise sam-
ples achieves the best virtual screening improvement, recover-
ing ∼60% of the noise-induced AUROC gap. Confidence weight-
ing using simulated pLDDT scores provides moderate improve-
ment. Noise-augmented training shows consistent but smaller gains
across all metrics.

4 RELATEDWORK
AlphaFold [2] and its database [7] provide predicted structures
for most known proteins. Geometric learning for drug discovery
includes equivariant networks [5], unified 2D/3D methods [3], and
diffusion-based docking [1]. Benchmarking commonly uses DUD-
E [4].

5 CONCLUSION
Our simulation study characterizes ConGLUDe’s failure modes on
predicted and divergent structures. Pocket prediction is most vulner-
able to structural quality, while virtual screening shows moderate
resilience. Ensemble-based mitigation offers practical value. These

findings suggest that integrating confidence-aware encoding and
structure augmentation during training could substantially improve
ConGLUDe’s applicability to the vast space of AlphaFold-predicted
targets.
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