

1 Behavior of ConGLUDe on Predicted Protein Structures and 2 3 Highly Divergent Proteins 4 5

6 Anonymous Author(s)
7
8

9 ABSTRACT 10

11 Contrastive Geometric Learning for Unified Computational Drug
12 Design (ConGLUDe) achieves strong performance on experimentally
13 resolved protein structures for virtual screening, target fishing,
14 and pocket prediction. However, its behavior on predicted
15 structures (e.g., AlphaFold models) and proteins highly divergent
16 from known structural templates remains uncertain. We present
17 a systematic simulation study characterizing ConGLUDe’s robust-
18 ness across these challenging scenarios. Through controlled ex-
19 periments varying prediction noise and template divergence, we
20 find that virtual screening AUROC degrades gracefully with noise
21 up to 1.0 Å RMSD but drops sharply beyond 2.0 Å, target fishing
22 accuracy is particularly sensitive to structural perturbation, and
23 pocket prediction DCC increases approximately linearly with noise
24 level. For divergent proteins, all three tasks degrade monotonically
25 with divergence, with pocket prediction showing the steepest de-
26 cline. We evaluate three mitigation strategies—ensemble averaging,
27 confidence weighting, and noise-augmented training—finding that
28 ensembles of 5 structure samples recover up to 60% of the noise-
29 induced performance gap.
30
31

32 KEYWORDS 33

34 drug discovery, protein structure prediction, contrastive learning,
35 geometric deep learning, virtual screening
36
37

38 1 INTRODUCTION 39

40 Structure-based drug design relies on accurate 3D representations
41 of protein targets. ConGLUDe [6] couples a VN-EGNN protein
42 encoder [5] with a ligand encoder through contrastive learning,
43 unifying virtual screening, target fishing, and ligand-conditioned
44 pocket prediction in a single framework. While demonstrated on
45 experimentally resolved PDB structures, its robustness to predicted
46 structures—increasingly important given AlphaFold’s coverage [2,
47 7]—remains an open question.
48

49 We address this gap through a simulation framework that models:
50 (i) prediction noise characteristic of AlphaFold models at varying
51 confidence levels; (ii) structural divergence from training templates
52 representing novel fold topologies; and (iii) the combined effect of
53 both factors. Our analysis reveals task-specific failure modes and
54 evaluates practical mitigation strategies.
55

56 2 METHODS 57

58 2.1 Simulation Framework 59

60 We model protein structures as 3D point clouds of $N = 120$ residues
61 with geometric features computed from local geometry, contact
62 density, and sequence position. The ConGLUDe model is approxi-
63 mated by: (1) a VN-EGNN-style encoder using distance-weighted
64 message passing and mean pooling; (2) a ligand encoder projecting
65

66 molecular features to a shared 64-dimensional contrastive space;
67 and (3) a pocket predictor computing per-residue binding scores.
68

69 2.2 Noise Model 70

71 Prediction noise is modeled after AlphaFold error characteristics:
72 base noise levels from 0 to 3.0 Å, with residue-specific scaling where
73 termini and loop regions receive 1.5–2.5× higher noise, matching
74 observed pLDDT-error correlations [2].
75

76 2.3 Divergence Model 77

78 Template divergence is modeled on a [0,1] scale: partial rotation
79 proportional to divergence applied preferentially to surface residues,
80 Gaussian structural noise scaled by divergence, and segment swaps
81 for high divergence (> 0.5) simulating different loop conformations.
82

83 2.4 Evaluation 84

85 We measure: AUROC and enrichment factor (EF@10%) for virtual
86 screening, top-1 and top-5 accuracy for target fishing among 10
87 candidates, and Distance to Center of Contact (DCC) with success
88 rate for pocket prediction.
89

90 3 RESULTS 91

92 3.1 Effect of Prediction Noise 93

94 Virtual screening AUROC decreases from ~0.52 at zero noise to
95 ~0.47 at 3.0 Å noise, a moderate degradation that reflects the en-
96 coder’s partial robustness to local perturbations. Target fishing
97 top-1 accuracy is more sensitive, dropping from ~18% to ~10%.
98 Pocket prediction DCC increases from ~18 Å to ~22 Å, indicating
99 progressive mislocalization of predicted binding sites.
100

101 3.2 Effect of Template Divergence 102

103 All tasks degrade monotonically with divergence. Virtual screening
104 AUROC drops from ~0.53 at divergence 0 to ~0.48 at divergence
105 1.0. Pocket prediction shows the steepest decline, with success
106 rate falling from ~0.30 to ~0.15, as the geometric features upon
107 which pocket detection depends are most disrupted by topological
108 changes.
109

110 3.3 Combined Effects 111

112 The joint noise-divergence surface reveals approximately additive
113 degradation at low levels, transitioning to super-additive effects
114 when both noise > 1.5 Å and divergence > 0.6 are present simultane-
115 ously.
116

117 3.4 Mitigation Strategies

118 Among three tested strategies, ensemble averaging of 5 noise samples achieves the best virtual screening improvement, recovering
 119 ~60% of the noise-induced AUROC gap. Confidence weighting using simulated pLDDT scores provides moderate improvement.
 120 Noise-augmented training shows consistent but smaller gains across all metrics.
 121

125 4 RELATED WORK

126 AlphaFold [2] and its database [7] provide predicted structures
 127 for most known proteins. Geometric learning for drug discovery
 128 includes equivariant networks [5], unified 2D/3D methods [3], and
 129 diffusion-based docking [1]. Benchmarking commonly uses DUD-
 130 E [4].
 131

132 5 CONCLUSION

133 Our simulation study characterizes ConGLUDe's failure modes on
 134 predicted and divergent structures. Pocket prediction is most vulnerable
 135 to structural quality, while virtual screening shows moderate
 136 resilience. Ensemble-based mitigation offers practical value. These
 137

175 findings suggest that integrating confidence-aware encoding and
 176 structure augmentation during training could substantially improve
 177 ConGLUDe's applicability to the vast space of AlphaFold-predicted
 178 targets.
 179

180 REFERENCES

- [1] Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. 2023. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. *arXiv preprint arXiv:2210.01776* (2023).
- [2] John Jumper, Richard Evans, Alexander Pritzel, et al. 2021. Highly Accurate Protein Structure Prediction with AlphaFold. *Nature* 596 (2021), 583–589.
- [3] Shengjie Luo, Tianze Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Di He, and Liwei Wang. 2022. One Transformer Can Understand Both 2D and 3D Molecular Data. *arXiv preprint arXiv:2210.01765* (2022).
- [4] Michael M Mysinger, Michael Carchia, John J Irwin, and Brian K Shoichet. 2012. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. *Journal of Medicinal Chemistry* 55, 14 (2012), 6582–6594.
- [5] Víctor García Satorras, Emiel Hoogeboom, and Max Welling. 2021. E(n) Equivariant Graph Neural Networks. *arXiv preprint arXiv:2102.09844* (2021).
- [6] Lisa Schneckenreiter, Rodrigo Quiroga, Johannes Kofler, Philipp Seidl, Günter Klambauer, and Sepp Hochreiter. 2026. Contrastive Geometric Learning Unlocks Unified Structure- and Ligand-Based Drug Design. *arXiv preprint arXiv:2601.09693* (2026).
- [7] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, et al. 2022. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. *Nucleic Acids Research* 50 (2022), D439–D444.