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Convergence Guarantees for the Two-Timescale RSGN Learning
System
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ABSTRACT
Resonant Sparse GeometryNetworks (RSGN) employ a two-timescale
learning paradigm coupling fast gradient descent on differentiable
parameters with slow Hebbian structural plasticity in hyperbolic
space. While partial theoretical results exist for each component,
convergence of the full coupled system remains an open ques-
tion. We provide numerical evidence for convergence through
three complementary directions: (1) smoothed-topology analysis
via sigmoid edge gates enabling Borkar’s two-timescale ODE frame-
work; (2) contraction analysis mapping the parameter regimes
where decay dominance ensures exponential convergence; and
(3) topology-change counting verifying finite settling of discrete
pruning/sprouting events. Our experiments demonstrate that con-
vergence holds under three conditions: sufficient timescale sep-
aration (𝜖 < 0.1), decay-dominated Hebbian regime (decay rate
> Hebbian strength × spectral bound), and Riemannian gradient
descent for hyperbolic parameters. We also characterize boundary
effects in the Poincaré ball and identify critical thresholds for each
parameter.

KEYWORDS
two-timescale learning, Hebbian plasticity, hyperbolic neural net-
works, convergence analysis, sparse networks

1 INTRODUCTION
RSGN [4] introduces input-dependent sparse routing in hyperbolic
space through a two-timescale learning system. The fast timescale
optimizes differentiable components (ignition embeddings, transfor-
mation matrices, output projections) via gradient descent, while the
slow timescale adjusts network structure through Hebbian affinity
updates [5], threshold adaptation, and discrete pruning/sprouting.
This architecture, operating in the Poincaré ball model of hyperbolic
space [7], enables hierarchical sparse representations.

The convergence of two-timescale stochastic approximation has
been extensively studied [3], but RSGN’s combination of (i) Rie-
mannian optimization on a non-Euclidean manifold, (ii) positive-
feedback Hebbian updates, and (iii) discrete topology changes cre-
ates challenges beyond standard theory. We address this open prob-
lem through three solution directions supported by extensive nu-
merical experiments.

2 PROBLEM SETUP
2.1 Fast Dynamics
The fast system performs Riemannian gradient descent [2] on node
positions {𝑝𝑖 } in the Poincaré ball and Euclidean gradient descent
on transformation weights𝑊 :

𝑝𝑖 ← 𝑝𝑖 − 𝜂fast · 𝜆−2𝑝𝑖
∇𝑝𝑖𝐿, 𝑊 ←𝑊 − 𝜂fast∇𝑊 𝐿,

where 𝜆𝑥 = 2/(1 − ∥𝑥 ∥2) is the conformal factor.

2.2 Slow Dynamics
The Hebbian affinity update follows:

¤𝐴𝑖 𝑗 = 𝜎 · 𝜂𝐻 · 𝜙 (𝑥𝑖 )𝜙 (𝑥 𝑗 ) − 𝜆decay · 𝐴𝑖 𝑗 ,

where 𝜎 is a reward signal, 𝜂𝐻 is Hebbian strength, and 𝜆decay is
the stabilizing decay. The slow learning rate is 𝜂slow = 𝜖 · 𝜂fast with
𝜖 ≪ 1.

2.3 Discrete Operations
Pruning removes edges where 𝐴𝑖 𝑗 < 𝜃prune; sprouting adds edges
where 𝐴𝑖 𝑗 > 𝜃sprout.

3 SOLUTION DIRECTIONS
3.1 Direction 1: Smoothed Topology
Replacing hard pruning thresholds with sigmoid gates 𝑔(𝑎) =

𝜎 (𝛽 (𝑎−𝜃prune))makes the system smooth and amenable to Borkar’s
two-timescale ODE framework [3]. For finite 𝛽 , the entire system is
differentiable. Our experiments verify: loss decreases monotonically
between topology perturbations, affinities stabilize, and contraction
is achieved.

3.2 Direction 2: Contraction Analysis
The critical stability condition from contraction theory [6] requires:

𝜆decay > 𝜎 · 𝜂𝐻 · 𝜆max (Φ), (1)

where 𝜆max (Φ) is the maximum eigenvalue of the activation corre-
lation matrix. When this holds, the slow dynamics contract expo-
nentially.

3.3 Direction 3: Finite Topology Changes
With 𝑛 nodes and bounded affinities, there are at most 2𝑛 (𝑛−1)/2
possible topologies. Under contracting dynamics between topology
changes, the system must settle after finitely many changes [1],
after which standard smooth convergence theory applies.

4 EXPERIMENTS
4.1 Smoothed Convergence
Running the two-timescale system with sigmoid edge gates (𝛽 = 20)
on a 10-node network for 200 steps, we observe monotonic loss
decrease and affinity stabilization, with final loss standard deviation
below 10−4.

4.2 Contraction Regime Mapping
Sweeping Hebbian strength 𝜂𝐻 ∈ [0.05, 1.0] and decay rate 𝜆 ∈
[0.05, 1.0], we find the convergence boundary follows 𝜆 ≈ 𝑐 · 𝜂𝐻
where 𝑐 depends on the spectral bound, matching the prediction
of (1).
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4.3 Topology Settling
With hard pruning on a 12-node network over 300 steps, the system
undergoes finitely many topology changes (typically 10–30 total)
before settling, after which loss converges smoothly.

4.4 Timescale Sensitivity
Sweeping 𝜖 ∈ [0.001, 1.0], convergence is robust for 𝜖 < 0.1 and
degrades beyond a critical value, confirming the quasi-static as-
sumption requirement.

4.5 Boundary Effects
Initializing nodes at varying Poincaré ball radii 𝑟 ∈ [0.1, 0.92], Rie-
mannian gradient descent converges uniformly, while the confor-
mal factor 𝜆 varies from 2.0 to 25.0, validating that the 𝜆−2 rescaling
prevents boundary divergence.

5 CONCLUSION
Our numerical evidence supports three sufficient conditions for
convergence: (i) 𝜖 sufficiently small; (ii) 𝜆decay > 𝜂𝐻 · 𝜆max (Φ); and
(iii) Riemannian (not Euclidean) gradient descent. Future work aims
to formalize these conditions into a complete convergence proof.
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