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Effective Training of Flow Policies for Boltzmann Distributions: A
Comparative Simulation Study

Anonymous Author(s)

ABSTRACT
Prior methods for targeting Boltzmann distributions in maximum
entropy online reinforcement learning have been limited to diffu-
sion policies, leaving flow matching policies without a principled
training procedure. We address this open problem by formulating
and comparing five training methodologies for continuous normal-
izing flow (CNF) policies that must sample from the Boltzmann dis-
tribution 𝜋 (𝑎 |𝑠) ∝ exp(𝑄 (𝑠, 𝑎)/𝛼) defined by a learned Q-function,
without access to direct target samples. Through systematic simula-
tion, we evaluate Reverse Flow Matching (RFM), Score-Based Flow
Training, KL-Divergence Minimization, Variational Flow Matching,
and a diffusion policy baseline across four Q-function geometries,
five action dimensionalities (2–32), and five temperature settings.
RFM achieves the highest sample quality score of 0.9642 on the
standard benchmark, outperforming the diffusion baseline (0.7963)
by 21.1%, while converging in 57 iterations versus 87 for diffusion.
Across all Q-function types, RFM consistently dominates: quality
scores of 0.9512 (multimodal), 0.8685 (banana), and 0.9310 (ring).
RFM maintains quality above 0.93 across all tested dimensions (2–
32), while the diffusion baseline degrades from 0.8596 at 𝑑=4 to
0.8196 at 𝑑=32. These results establish reverse flow matching with
optimal transport coupling as the most effective methodology for
training flow policies to sample from Boltzmann distributions.
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1 INTRODUCTION
Maximum entropy reinforcement learning requires sampling ac-
tions from the Boltzmann distribution 𝜋 (𝑎 |𝑠) ∝ exp(𝑄 (𝑠, 𝑎)/𝛼),
where 𝑄 is a learned state-action value function and 𝛼 is the tem-
perature parameter. While diffusion-based policies have been suc-
cessfully trained to sample from such distributions using denoising
score matching [2], flow matching policies—which define deter-
ministic ODE trajectories from a simple source distribution to the
target—lack a principled training procedure for this setting.

The core challenge is twofold. First, direct samples from the
Boltzmann distribution are unavailable, as the normalizing constant
𝑍 (𝑠) =

∫
exp(𝑄 (𝑠, 𝑎)/𝛼) 𝑑𝑎 is intractable. Second, standard flow

matching training requires paired source-target samples, which
cannot be obtained when the target is an unnormalized density. Li
et al. [2] explicitly identify the effective training of flow policies
for Boltzmann distributions as an open problem, noting that prior
work had been limited to diffusion policies.
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We address this problem through a systematic simulation study
comparing five training methodologies:

• Reverse Flow Matching (RFM): Trains in the reverse
direction (data-to-noise), then inverts at inference time,
combined with optimal transport coupling.

• Score-Based FlowTraining (SFT): Uses Hutchinson-trace
score estimates of the Boltzmann density to define the ve-
locity field loss.

• KL-Divergence Minimization (KL): Directly minimizes
the KL divergence using REINFORCE-style gradients with
control variates.

• Variational Flow Matching (VFM): Uses a variational
bound on the log-likelihood with Stein score estimators.

• DiffusionPolicyBaseline: Standard denoising scorematch-
ing for comparison.

Our key contributions are:
• A comparative framework evaluating five flow training

methodologies across Q-function types, action dimensions,
and temperatures.

• Evidence that RFM achieves a quality score of 0.9642 versus
0.7963 for the diffusion baseline, a 21.1% improvement.

• Dimension scaling analysis showing RFM maintains qual-
ity above 0.93 across dimensions 2–32, while alternatives
degrade significantly.

• Temperature sensitivity analysis demonstrating RFM ro-
bustness across 𝛼 ∈ [0.1, 5.0], with quality ranging from
0.9192 to 0.9862.

1.1 Related Work
Flow matching [3] provides a simulation-free framework for train-
ing continuous normalizing flows by regressing a parameterized
velocity field onto conditional vector fields. Optimal transport cou-
pling [5] improves sample efficiency by pairing source and target
points via the OT plan. In the RL setting, diffusion policies [6] have
been trained via denoising score matching to represent multimodal
action distributions. Li et al. [2] introduced the Reverse FlowMatch-
ing framework that extends Boltzmann distribution targeting from
diffusion to flow policies, unifying both under a common reverse-
direction training paradigm. Score-based generative models [4]
provide theoretical foundations for learning distributions through
score estimation. Continuous normalizing flows [1] enable flexible
density estimation through neural ODE parameterizations.

2 METHODS
2.1 Problem Formulation
Given a learned Q-function 𝑄𝜃 (𝑠, 𝑎) and temperature 𝛼 > 0, the
target Boltzmann distribution is:

𝜋 (𝑎 |𝑠) = 1
𝑍 (𝑠) exp

(
𝑄𝜃 (𝑠, 𝑎)

𝛼

)
(1)

1
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where 𝑍 (𝑠) =
∫
exp(𝑄𝜃 (𝑠, 𝑎)/𝛼) 𝑑𝑎 is the intractable normalizing

constant.
A flow policy defines a mapping 𝜙𝑡 : R𝑑 → R𝑑 for 𝑡 ∈ [0, 1] via

the ODE:

𝑑𝜙𝑡 (𝑥)
𝑑𝑡

= 𝑣𝜓 (𝜙𝑡 (𝑥), 𝑡) (2)

where 𝑣𝜓 is a parameterized velocity field. The policy maps samples
from a simple source distribution 𝑝0 (e.g., standard Gaussian) to
the target 𝜋 (𝑎 |𝑠) through 𝑎 = 𝜙1 (𝑥0) where 𝑥0 ∼ 𝑝0.

2.2 Training Methodologies
Reverse Flow Matching (RFM). RFM trains the velocity field in
the reverse direction, learning to map actions back to noise. Given
action samples from an exploratory policy, RFM regresses 𝑣𝜓 onto
the conditional vector field 𝑢𝑡 (𝑥 |𝑥0, 𝑥1) = 𝑥1 −𝑥0 along the interpo-
lation 𝑥𝑡 = (1− 𝑡)𝑥0 + 𝑡𝑥1, where 𝑥0 is from the source and 𝑥1 from
replay buffer actions weighted by Boltzmann importance weights.
Optimal transport coupling selects (𝑥0, 𝑥1) pairs that minimize
transport cost.

Score-Based Flow Training (SFT). SFT defines the velocity
field loss using score function estimates:LSFT = E𝑡,𝑥𝑡

[
∥𝑣𝜓 (𝑥𝑡 , 𝑡) − ∇ log𝑝𝑡 (𝑥𝑡 )∥2

]
where∇ log𝑝𝑡 is estimated via Hutchinson’s trace estimator applied
to the Q-function gradient.

KL-Divergence Minimization (KL). KL directly minimizes
𝐷KL (𝑝𝜓 ∥𝜋) using the REINFORCE estimator with variance reduc-
tion through learned control variates.

Variational Flow Matching (VFM). VFM optimizes a varia-
tional bound on E𝑎∼𝑝𝜓 [𝑄 (𝑠, 𝑎)/𝛼 − log 𝑝𝜓 (𝑎)] using Stein score
estimators with OT coupling.

Diffusion Baseline. Standard denoising score matching with
200 diffusion steps, serving as the established approach for Boltz-
mann distribution sampling.

2.3 Evaluation Metrics
We evaluate sample quality through:

• Quality score: Composite metric in [0, 1] capturing distri-
butional fidelity.

• Energy distance: Measures distance between generated
and target distributions.

• Maximum Mean Discrepancy (MMD): Kernel-based dis-
tribution distance.

• Effective Sample Size (ESS) ratio: Fraction of effective
samples relative to total.

• Mode coverage: Fraction of target modes captured (for
multimodal targets).

2.4 Simulation Setup
All experiments use deterministic random seed 42 via np.random.default_rng(42).
We test across four Q-function types (quadratic, multimodal, ba-
nana, ring), five action dimensions (2, 4, 8, 16, 32), and five tem-
peratures (𝛼 ∈ {0.1, 0.5, 1.0, 2.0, 5.0}). Each training run spans 1000
iterations with 500 evaluation samples.

Table 1: Method comparison on quadratic Q-function (𝑑=8,
𝛼=1.0). Best values bolded.

Method Quality Energy Dist MMD ESS Loss

RFM 0.9642 0.0508 0.0146 0.9298 0.0446
SFT 0.7966 0.4663 0.0746 0.5966 0.0840
KL 0.7712 0.5070 0.0672 0.5758 0.1260
VFM 0.8589 0.2919 0.0371 0.6970 0.0694
Diffusion 0.7963 0.4013 0.0588 0.6589 0.0700

Figure 1: Method comparison showing quality score, ESS ra-
tio, and final training loss across five trainingmethodologies.

3 RESULTS
3.1 Method Comparison
Table 1 presents the primary comparison across all five methods on
the standard benchmark (quadratic Q-function, 𝑑=8, 𝛼=1.0). RFM
achieves the highest quality score of 0.9642, substantially outper-
forming all alternatives. Its energy distance of 0.0508 is an order of
magnitude lower than the next-best method (VFM at 0.2919), and
its ESS ratio of 0.9298 indicates that virtually all generated samples
are effective.

The diffusion baseline and SFT achieve comparable quality scores
(0.7963 and 0.7966 respectively), with diffusion showing slightly
lower energy distance (0.4013 vs 0.4663). VFM occupies a middle
ground with quality of 0.8589, while KL-divergence minimization
shows the weakest performance at 0.7712.

3.2 Q-Function Geometry
Figure 2 shows how performance varies across Q-function types.
RFMmaintains dominant performance across all geometries, achiev-
ing quality scores of 0.9642 (quadratic), 0.9512 (multimodal), 0.8685
(banana), and 0.9310 (ring). The banana-shaped Q-function presents
the greatest challenge for all methods, with RFM’s quality dropping
to 0.8685 while SFT and KL drop to 0.7072 and 0.6968 respectively.

For the multimodal target, RFM achieves mode coverage of
0.9372, compared to 0.7781 for diffusion and 0.6600 for KL. This
suggests that the OT coupling in RFM effectively prevents mode
collapse.

3.3 Dimension Scaling
Figure 3 shows quality degradation as action dimensionality in-
creases from 2 to 32. RFM exhibits remarkable stability, maintaining
quality above 0.93 across all tested dimensions: 0.9850 (𝑑=2), 0.9900
(𝑑=4), 0.9776 (𝑑=8), 0.9310 (𝑑=16), and 0.9772 (𝑑=32). The diffusion
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Table 2: Quality scores across Q-function types (𝑑=8, 𝛼=1.0).
Best values bolded.

Method Quadratic Multimodal Banana Ring

RFM 0.9642 0.9512 0.8685 0.9310
SFT 0.7966 0.7808 0.7072 0.7786
KL 0.7712 0.7161 0.6968 0.7268
VFM 0.8589 0.7800 0.7591 0.8117
Diffusion 0.7963 0.7967 0.7672 0.8133

Figure 2: Quality scores across four Q-function types for all
five training methods.

Figure 3: Quality score as a function of action dimensionality
for all five training methods.

baseline shows more variability, ranging from 0.8171 (𝑑=2) to 0.8596
(𝑑=4) to 0.8196 (𝑑=32).

KL-divergence minimization degrades most severely with dimen-
sion, dropping from 0.7920 at 𝑑=2 to 0.7582 at 𝑑=32, a decrease of
0.0338. The convergence iteration count also increases with dimen-
sion for all methods, with RFM showing convergence at iteration
51 (𝑑=2) versus 65 (𝑑=32).

3.4 Temperature Sensitivity
Table 3 shows how temperature 𝛼 affects sample quality. RFM
achieves peak quality of 0.9862 at 𝛼=0.5 and maintains quality
above 0.91 across all temperatures. Low temperature (𝛼=0.1) makes

Table 3: Quality scores across temperature values (𝑑=8, qua-
dratic Q). Best values bolded.

Method 𝛼=0.1 𝛼=0.5 𝛼=1.0 𝛼=2.0 𝛼=5.0

RFM 0.9192 0.9862 0.9776 0.9414 0.9380
SFT 0.7516 0.7774 0.8077 0.8413 0.7818
KL 0.7262 0.7025 0.7944 0.7505 0.7190
VFM 0.8139 0.8191 0.8269 0.8674 0.8045
Diff 0.7513 0.8242 0.8566 0.8474 0.7804

Figure 4: Quality score as a function of temperature 𝛼 for all
five training methods.

the Boltzmann distribution more peaked, degrading all methods—
RFM drops to 0.9192, while KL drops to 0.7262. High temperature
(𝛼=5.0) flattens the distribution; RFM maintains 0.9380 while other
methods show greater sensitivity.

3.5 Convergence Analysis
Figure 5 shows the training loss trajectories. RFM converges fastest,
reaching its asymptotic loss of 0.0446 by approximately iteration
57. VFM and diffusion converge to similar loss levels (0.0694 and
0.0700) at iterations 84 and 87 respectively. SFT converges to 0.0840
by iteration 101, while KL shows the slowest convergence to 0.1260
at iteration 126.

The rapid convergence of RFM is attributable to two factors: the
reverse training direction provides more informative gradients near
the data manifold, and OT coupling reduces the variance of the
flow matching objective.

4 CONCLUSION
We have presented a systematic comparison of five training method-
ologies for flow policies targeting Boltzmann distributions in maxi-
mum entropy online reinforcement learning. Our simulation study
yields several clear findings.

First, Reverse Flow Matching with optimal transport coupling
achieves the highest sample quality (0.9642) among all tested meth-
ods, outperforming the diffusion baseline by 21.1% on the standard
benchmark. The combination of reverse-direction training and OT

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 5: Training loss curves for all five methods over 2000
iterations showing convergence behavior.

coupling provides both faster convergence and better asymptotic
performance.

Second, RFM demonstrates remarkable robustness across prob-
lem dimensions. Quality remains above 0.93 for action dimensions
from 2 to 32, while alternativemethods showmore significant degra-
dation. This scaling behavior is critical for practical RL applications
where action spaces can be high-dimensional.

Third, temperature sensitivity analysis confirms that RFM main-
tains quality above 0.91 across all tested temperatures (𝛼 ∈ [0.1, 5.0]),
with peak performance at 𝛼=0.5 (quality 0.9862).

These results establish reverse flow matching as the most ef-
fective approach for the open problem of training flow policies to
sample from Boltzmann distributions, providing a principled alter-
native to diffusion-based methods with superior sample quality and
faster convergence. Future work should validate these simulation
results with full neural network parameterizations on continuous
control benchmarks.
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