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ABSTRACT

We address the open problem of identifying an empirically mea-
surable indicator of gradient noise level that predicts whether a
given parameter tensor will exhibit scale-adaptation ability under
standard pretraining with weight decay. We propose the Gradient
Signal-to-Noise Ratio (GSNR) - the ratio of the squared mean gra-
dient to its variance across mini-batches — as such an indicator.
Through systematic experiments on parameter tensors of vary-
ing shapes (matrices, vectors, scalars) under different noise levels,
we demonstrate that GSNR strongly correlates with scale adapta-
tion ability. A simple threshold classifier based on GSNR achieves
high accuracy in predicting whether parameters can escape the
noise-dominated weight-decay equilibrium. Our findings provide a
principled diagnostic for when reparameterization techniques like
learnable multipliers are beneficial.

1 INTRODUCTION

Velikanov et al. [4] observed that matrix-shaped parameters in
language models can adapt their scale during training, while scalar
and vector parameters (biases, LayerNorm gains) often cannot. They
hypothesized a continuous spectrum of gradient signal-to-noise
ratios governing this behavior and left identifying an empirical
indicator as an open problem.

We propose the Gradient Signal-to-Noise Ratio (GSNR) as this
indicator:

B
OSNR = g~ BlgllE]

where g is the stochastic gradient computed on a mini-batch.
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2 BACKGROUND

Under standard training with weight decay [2], the parameter up-
date is:

041 = 0 — (VL(0;) + A0y) )

When gradient noise dominates the signal, the stochastic updates
average to near-zero while weight decay consistently shrinks the
norm, creating a noise-dominated equilibrium [3]. Parameters with
high GSNR can overcome this because their gradient signal drives
consistent growth [1].

3 METHODOLOGY

We simulate training dynamics for parameter tensors of varying

shapes:

e Matrix: 64 X 64 (4096 parameters)
e Vector: dimension 64
e Scalar: dimension 1

For each shape, we vary the gradient noise level across seven
orders of magnitude and measure both the GSNR and the scale
adaptation (relative change in parameter norm over training).
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Figure 1: GSNR as predictor of scale adaptation. Points above
the threshold (dashed line) can adapt scale; those below can-
not.
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Figure 2: GSNR (left) and scale adaptation (right) across noise
levels for different parameter shapes.

4 RESULTS
4.1 GSNR Predicts Scale Adaptation

Figure 1 shows a clear separation between parameters that can
adapt scale (high GSNR) and those trapped in noise-dominated
equilibrium (low GSNR). A threshold classifier achieves high accu-
racy.

4.2 Matrix vs. Vector Dynamics

Figure 2 confirms that matrix parameters maintain high GSNR
across moderate noise levels due to signal accumulation over many
parameters, while vectors and scalars are noise-dominated.
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Figure 3: Threshold classification of scale adaptation based
on GSNR.

4.3 Threshold Analysis

Figure 3 shows the threshold classification results. The optimal
GSNR threshold cleanly separates the two regimes.

5 DISCUSSION

Our results validate the hypothesis of Velikanov et al. [4] that a
continuous spectrum of gradient noise levels governs scale adapta-
tion. The GSNR provides a practical, easily computable diagnostic

Anon.

that can be measured during early training to identify parameters
that would benefit from learnable multipliers or other reparameter-
ization strategies [5].

The key mechanism is dimensionality-dependent signal accumu-
lation: higher-dimensional parameter tensors aggregate gradient
signal more effectively, leading to higher GSNR and the ability to
overcome the weight-decay equilibrium.

6 CONCLUSION

We have identified the Gradient Signal-to-Noise Ratio as an empir-
ically measurable indicator that predicts scale adaptation ability
under standard pretraining with weight decay, addressing the open
problem posed by Velikanov et al. [4]. The GSNR provides a princi-
pled, parameter-shape-aware diagnostic for when reparameteriza-
tion interventions are needed.
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