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ABSTRACT

We provide computational evidence that Conway’s Game of Life is
epiplexity-emergent in the sense of Finzi et al. (2026). Epiplexity cap-
tures the structural information extractable by a computationally
bounded observer. A system is epiplexity-emergent if two observers
with compute budgets T; = o(T3) see a bounded (©(1)) complexity
gap for one-step prediction but an unbounded (w(1)) gap for multi-
step prediction. Through systematic experiments on n X n grids
with varying grid sizes and prediction horizons, using compression-
based complexity proxies, we demonstrate that: (i) the one-step
epiplexity gap remains bounded as n increases, confirming that
local rules make single-step prediction equally accessible to both
observers; and (ii) the multi-step gap grows with both prediction
horizon k(n) and grid size n, confirming that emergent phenomena
(gliders, oscillators, complex interactions) create structural com-
plexity that only the stronger observer can leverage. These results
support the formal claim that compute-limited predictors must in-
ternalize rich structure to predict Game of Life dynamics over long
horizons.

1 INTRODUCTION

Conway’s Game of Life (GoL) is the canonical example of a simple
local rule generating complex emergent behavior [1, 6]. Despite
this intuitive understanding, a formal mathematical proof that GoL
satisfies rigorous definitions of emergence remains open.

Finzi et al. [2] introduced the concept of epiplexity — the struc-
tural information extractable by a computationally bounded ob-
server — and defined epiplexity-emergence as a formal criterion for
emergence. They conjectured that GoL satisfies this definition but
provided only empirical evidence for related cellular automata.

We provide systematic computational evidence supporting this

conjecture by demonstrating the key signatures of epiplexity-emergence:

bounded one-step gaps and growing multi-step gaps.

2 BACKGROUND

2.1 Epiplexity

For a computationally bounded observer with time budget T, the
epiplexity ST(®(X)|X) measures the structural complexity of the
evolved state ®(X) given the initial state X, as perceived by this
observer [2].

2.2 Epiplexity-Emergence
A system (®, X) is epiplexity-emergent if there exist time bounds
Ty = o(Ty) and iteration schedule k(n) such that:

(1) ST, (®(X)|X)-ST,(2(X)|X) = ©(1) (one-step gap bounded)
(2) Sq, (@K (X)|X) — S7,(@FM) (X)[X) = w(1) (multi-step
gap grows)

(a) One-Step: Gap is ©(1) (b) Multi-Step (n=64): Gap Grows
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Figure 1: (a) One-step epiplexity gap remains bounded. (b)
Multi-step gap grows with prediction horizon.

2.3 Game of Life

The GoL update rule on an n X n binary grid is deterministic and
local: each cell’s next state depends only on its 8 neighbors. Despite
this simplicity, GoL is known to be Turing-complete [4].

3 METHODOLOGY
3.1 Complexity Proxy

We use compression-based complexity [3] as a proxy for epiplexity.
The conditional complexity of state Y given X is estimated via the
compression ratio of the XOR difference, weighted by observer
prediction accuracy.

3.2 Observer Models

e Weak observer (T; = 100): Simulates only local patches.
e Strong observer (T, = 10000): Simulates the full grid.

3.3 Experimental Design

We test grid sizes n € {8, 16,32, 64} and prediction horizons k €
{1,2,5, 10, 20, 30, 50}, averaging over 10 random initial configura-
tions.

4 RESULTS

4.1 One-Step Gap

Figure 1(a) shows that the one-step epiplexity gap remains ap-
proximately constant across grid sizes, consistent with the ©(1)
requirement. This reflects the local nature of GoL rules.

4.2 Multi-Step Gap

Figure 1(b) shows the multi-step gap growing with prediction hori-
zon k for the largest grid size, consistent with the w(1) requirement.
The growth reflects emergent patterns that propagate beyond local
neighborhoods.
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Figure 2: Structural complexity and population dynamics
during GoL evolution.
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Figure 3: Multi-step epiplexity gap scaling with grid size at
fixed horizon k = 20.

4.3 Pattern Complexity

Figure 2 shows the evolution of structural complexity over time.
Compression complexity peaks during the transient phase before
settling as stable patterns emerge.

4.4 Scaling

Figure 3 confirms that the multi-step gap grows with grid size n, as
larger grids support richer emergent structures.

5 DISCUSSION

Our results provide computational evidence that GoL satisfies the
epiplexity-emergence definition:

Why one-step is easy. GoL rules are purely local: each cell’s
next state depends on exactly 9 cells (itself and 8 neighbors). Even
a weak observer can compute this local rule, so the one-step gap is
small.

Why multi-step is hard. Over many steps, information propa-
gates globally via gliders, oscillators, and other structures. Predict-
ing the k-step state requires understanding these emergent patterns,
which demands global simulation that the weak observer cannot
perform.

Anon.

Connection to Turing completeness. The GoL’s Turing com-
pleteness [4] suggests that multi-step prediction is inherently hard,
reinforcing the growing gap.

6 CONCLUSION

We have provided computational evidence supporting the conjec-
ture of Finzi et al. [2] that Conway’s Game of Life is epiplexity-
emergent. The bounded one-step gap and growing multi-step gap
are consistent across grid sizes and prediction horizons, providing
a foundation for future formal proofs [5].
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