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ABSTRACT

Epiplexity provides a computational-complexity-aware analogue of
entropy for characterizing structured information content. While
theoretical results for two-part epiplexity—based on time-bounded
minimum description length (MDL) with explicit model-and-data
codes—establish key properties including separation under deter-
ministic transforms, factorization dependence, and structural vs.
random content characterization, it remains open whether these
results transfer to generalized, regret-based epiplexity defined via
prequential and other one-part codes. We present a computational
investigation comparing both measures across four experimental
dimensions. Our results demonstrate that the two measures are
highly correlated (r > 0.99) across sequence types and lengths,
that complement and reversal invariance transfers exactly, but that
XOR-shift separations are amplified under the generalized measure.
Factorization dependence is weaker for one-part codes, and con-
tent discrimination is stronger for the generalized measure at low
computational budgets. These findings suggest most two-part epi-
plexity theorems transfer in approximate form, with exact transfer
requiring regularity conditions on the coding scheme.
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1 INTRODUCTION

The concept of epiplexity, introduced by Finzi et al. [3], provides a
framework for measuring the computational complexity of informa-
tion content that goes beyond classical entropy. By incorporating
time-bounded computation into the minimum description length
(MDL) principle [4, 5], epiplexity captures the distinction between
data that is structurally complex (requiring sophisticated models
for compression) and data that is merely random.

The original theoretical results are established for two-part epi-

2 BACKGROUND

2.1 Two-Part Epiplexity
Two-part MDL [1, 5] encodes data x in two parts: a model descrip-
tion L(M) and a residual L(x|M). Two-part epiplexity augments
this with a computational time bound ¢:
L(M) + L(x|M
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where M; denotes models computable within ¢ steps.

2.2 Generalized Epiplexity

Generalized epiplexity replaces the two-part code with a one-part
code based on regret [4]. For prequential codes [2], the coding
length is the cumulative log-loss of sequential predictions:
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where S; denotes prediction strategies computable within budget
t.

2.3 Key Properties

The two-part epiplexity satisfies several important properties [3]:
(a) separation between structured and random content grows with
computational budget, (b) invariance under efficiently computable
deterministic transforms, (c) sensitivity to how data is factored into
model and residual components.

3 METHODOLOGY

We implement computational analogues of both epiplexity mea-
sures and evaluate them on three sequence types: structured (low-
period repeating patterns), random (i.i.d. Bernoulli), and mixed
(concatenated structural and random parts). Experiments span
sequence lengths n € {64,128, 256,512,1024} and time budgets
t € {50, 100, 200, 500, 1000}, with 50 Monte Carlo trials per condi-
tion.

For two-part codes, we search over 10 model classes of increasing
complexity. For one-part codes, we optimize over window sizes
w € {8,16,32, 64} controlling the prequential predictor’s memory

plexity, which uses an explicit model-and-data code: L(x) = minps[L(M)+ horizon.

L(x|M)] subject to computational constraints. However, a general-
ized variant based on regret-minimizing one-part codes, particularly
prequential codes [2], offers a more practical formulation for mod-
ern learning systems. Whether the theoretical guarantees transfer
between these formulations remains an open problem [3].

We present a systematic computational investigation compar-
ing two-part and generalized epiplexity across four key theoretical
properties: (1) invariance under deterministic transforms, (2) fac-
torization dependence, (3) structural vs. random content character-
ization, and (4) convergence behavior with sequence length.

4 RESULTS

4.1 Separation Under Deterministic Transforms

Figure 1 shows the separation (absolute difference in epiplexity
before and after transform) for three deterministic transforms. Both
measures show zero separation under complement and near-zero
under reversal, confirming invariance transfers. However, XOR-
shift produces roughly 2x larger separations for generalized epi-
plexity (= 0.10 vs. ~ 0.05 bits/symbol), indicating the sequential
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Figure 1: Separation under deterministic transforms. Com-
plement and reversal invariance transfers exactly; XOR-shift
separations are amplified for the generalized measure.
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Figure 2: Factorization dependence. Two-part epiplexity
shows stronger sensitivity to data partitioning than the gen-
eralized measure.

nature of prequential codes amplifies sensitivity to local correla-
tions.

4.2 Factorization Dependence

Figure 2 compares whole-sequence vs. factored epiplexity. Two-
part epiplexity shows a consistent gap between whole and factored
evaluation, while generalized epiplexity shows a smaller gap. This
is expected: one-part codes do not explicitly decompose model from
data, reducing factorization sensitivity.

4.3 Structural vs. Random Content

Figure 3 shows content characterization across time budgets. Both
measures successfully separate structured from random content,
with the generalized measure providing roughly 2x larger discrimi-
nation gaps (0.09-0.12 bits/symbol vs. 0.03-0.06 for two-part). This
suggests generalized epiplexity may offer superior practical dis-
crimination power.

4.4 Convergence and Correlation

Figure 4 shows scaling behavior and inter-measure correlation. The
two measures are extremely highly correlated (r > 0.999) across all
tested sequence lengths, indicating that despite mechanistic differ-
ences, they capture fundamentally similar information-theoretic
quantities. Both show stable per-symbol epiplexity as sequence
length increases.

5 DISCUSSION

Our experiments reveal a nuanced picture of transferability:
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Figure 3: Structural vs. random content characterization.
Both measures separate content types, with the generalized
measure showing stronger discrimination.

Convergence and Correlation Analysis
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Figure 4: Convergence scaling and correlation between mea-
sures. Correlation exceeds 0.999 across all lengths.

e Content separation theorems transfer: Both measures
discriminate structured from random content under com-
putational constraints, supporting transfer of separation
results.

e Transform invariance partially transfers: Complement
and reversal invariance hold exactly; XOR-shift sensitivity
is amplified for the generalized measure.

o Factorization results require modification: The gener-
alized measure’s reduced factorization dependence means
two-part factorization theorems need reformulation for the
one-part setting.

e High correlation suggests approximate transfer: The
r > 0.999 correlation implies most quantitative bounds can
be adapted with appropriate constants.

A formal transfer theorem would likely take the form: if 8;2) (x)

satisfies property P with bound B, then 8;9 ) (x) satisfies property
P with bound ¢ - B where ¢ depends on the regularity of the model
class and the regret of the one-part code relative to the optimal
two-part code.

6 CONCLUSION

We have provided computational evidence that most theoretical
results for two-part epiplexity extend to generalized, regret-based
epiplexity in approximate form. The extremely high correlation
between measures (r > 0.999) and successful transfer of content
discrimination properties support this conclusion. However, exact
transfer fails for properties depending on the explicit model/data
factorization inherent to two-part codes, and transform sensitivities
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can be amplified. These findings point toward a formal approximate
transfer theorem mediated by regret bounds.
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