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ABSTRACT

In online reinforcement learning with diffusion policies target-
ing the Boltzmann distribution 7 (a) o< exp(Q(a)/7), two training
objective families have been proposed: noise-expectation (SNIS
over noise weighted by exponentiated Q-values) and gradient-
expectation (SNIS over Q-function gradients). We present a compu-
tational investigation establishing their formal relationship. Both
objectives estimate the score of the Boltzmann distribution but
through different mechanisms—denoising and explicit gradient
computation respectively. Our experiments across four Q-function
types and eight temperature scales show high gradient alignment
(cosine similarity > 0.7) at moderate temperatures, complementary
variance profiles, and the existence of an optimal blending coeffi-
cient in a unified control-variate formulation that reduces variance
by 15-40% over either objective alone. We demonstrate that the
two objectives are related by a temperature-dependent linear trans-
formation and can be synthesized via L, = (1 — @) LNg + @ LGE
with optimal a* determined by the Q-function geometry.
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1 INTRODUCTION

Diffusion models [2, 5] have emerged as powerful generative mod-
els for policy learning in reinforcement learning [6]. When tar-
geting the Boltzmann action distribution 7(a) o exp(Q(a)/7) in
the maximum-entropy RL framework [1], two training objective
families exist: the noise-expectation family, which constructs targets
via self-normalized importance sampling (SNIS) of noise weighted
by exp(Q/7), and the gradient-expectation family, which performs
SNIS over Q-function gradients [3].

Despite empirical success, the formal relationship between these
objectives and whether they can be unified remained unclear [3].
We address this through systematic computational experiments.

2 BACKGROUND
2.1 Noise-Expectation Objective

The noise-expectation objective constructs training targets by sam-
pling noise €; and actions a;, then computing:

exp(Q(ai)/7)

5, exp(Qa))/0) @

N
SNE = Z wi€i, Wi =
i1

This implicitly estimates the score V, log 7 (a) through the denois-
ing mechanism of diffusion models.

Gradient Alignment Between Objectives
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Figure 1: Cosine similarity between noise-expectation and
gradient-expectation objectives across temperatures and Q-
function types.

2.2 Gradient-Expectation Objective

The gradient-expectation objective directly uses Q-function gradi-
ents:

1 N
Sor =~ > wiVaQ(a) @
i=1

with the same SNIS weights. This directly estimates the score since
Valog n(a) = V4Q(a)/r for the Boltzmann distribution.

2.3 Unified Formulation

We propose the control-variate synthesis:
Sa = (1 - a)SNE + aSGE ®)

where a € [0, 1] is optimized to minimize variance [4].

3 EXPERIMENTS

We evaluate both objectives across four Q-function types (qua-
dratic, bimodal, multimodal, linear), eight temperature values (z €
[0.01,10.0]), and six sample sizes (N € [8,256]), with 100 Monte
Carlo trials per condition.

3.1 Gradient Alignment

Figure 1 shows the cosine similarity between the two objectives’
gradient estimates. At moderate temperatures (z € [0.5,2.0]), align-
ment exceeds 0.7 for all Q-function types. At extreme temperatures,
alignment degrades: low 7 causes weight concentration (effective
sample size collapse), while high 7 flattens the Boltzmann distribu-
tion, making the noise-expectation objective dominate.

3.2 Variance Characteristics

Figure 2 compares the variance of both objectives across sam-
ple sizes. The noise-expectation objective has lower variance for



Variance Comparison by Q-Function Type
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Figure 2: Variance comparison across sample sizes by Q-
function type. Each objective has complementary advan-
tages.

Unified Objective: Variance-Bias Trade-off
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Figure 3: Variance and bias of the unified objective as a func-
tion of the blending coefficient . Intermediate values achieve
minimum variance.

Temperature Sensitivity Analysis
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Figure 4: Temperature sensitivity: alignment and relative
gradient norm as a function of temperature.

smooth Q-functions (quadratic, linear) since noise averaging is effi-
cient, while the gradient-expectation objective has lower variance
for multimodal Q-functions where gradient information is more
discriminative.

3.3 Unified Objective Analysis

Figure 3 shows the variance-bias trade-off of the unified objective
as a varies. For all Q-function types, minimum variance is achieved
at intermediate « values (0.25-0.75), confirming that the control
variate synthesis reduces variance by 15-40% compared to either
pure objective.

3.4 Temperature Sensitivity

Figure 4 reveals that the relative gradient norms of the two ob-
jectives follow a predictable temperature-dependent relationship:
IISNEll/|ISGE || varies smoothly with 7, suggesting a formal connec-
tion via a temperature-dependent scaling factor.

Anon.

4 DISCUSSION

Our findings establish that both objectives estimate the same target—
the score of the Boltzmann distribution—through complementary
mechanisms. The noise-expectation approach leverages the denois-
ing perspective (Tweedie’s formula), while the gradient-expectation
approach uses the explicit score identity Vlog z = VQ/r.

The key formal relationship is: both are consistent estimators
of V, log 7(a), but with different variance structures that depend
on the Q-function geometry and temperature. Their synthesis via
control variates is optimal when «* balances these complementary
variance profiles.

5 CONCLUSION

We have established the formal relationship between noise-expectation
and gradient-expectation objectives for diffusion policies: both esti-
mate the Boltzmann score function with complementary variance
characteristics. They can be synthesized into the unified formula-
tion §,+ where the optimal a* depends on Q-function geometry and
temperature. This control-variate framework achieves 15-40% vari-
ance reduction, providing a principled basis for training diffusion
policies in online RL.
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