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ABSTRACT
In online reinforcement learning with diffusion policies target-
ing the Boltzmann distribution 𝜋 (𝑎) ∝ exp(𝑄 (𝑎)/𝜏), two training
objective families have been proposed: noise-expectation (SNIS
over noise weighted by exponentiated Q-values) and gradient-
expectation (SNIS over Q-function gradients). We present a compu-
tational investigation establishing their formal relationship. Both
objectives estimate the score of the Boltzmann distribution but
through different mechanisms—denoising and explicit gradient
computation respectively. Our experiments across four Q-function
types and eight temperature scales show high gradient alignment
(cosine similarity > 0.7) at moderate temperatures, complementary
variance profiles, and the existence of an optimal blending coeffi-
cient in a unified control-variate formulation that reduces variance
by 15–40% over either objective alone. We demonstrate that the
two objectives are related by a temperature-dependent linear trans-
formation and can be synthesized via L𝛼 = (1 − 𝛼)LNE + 𝛼LGE
with optimal 𝛼∗ determined by the Q-function geometry.
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1 INTRODUCTION
Diffusion models [2, 5] have emerged as powerful generative mod-
els for policy learning in reinforcement learning [6]. When tar-
geting the Boltzmann action distribution 𝜋 (𝑎) ∝ exp(𝑄 (𝑎)/𝜏) in
the maximum-entropy RL framework [1], two training objective
families exist: the noise-expectation family, which constructs targets
via self-normalized importance sampling (SNIS) of noise weighted
by exp(𝑄/𝜏), and the gradient-expectation family, which performs
SNIS over Q-function gradients [3].

Despite empirical success, the formal relationship between these
objectives and whether they can be unified remained unclear [3].
We address this through systematic computational experiments.

2 BACKGROUND
2.1 Noise-Expectation Objective
The noise-expectation objective constructs training targets by sam-
pling noise 𝜖𝑖 and actions 𝑎𝑖 , then computing:

𝑠NE =

𝑁∑︁
𝑖=1

𝑤𝑖𝜖𝑖 , 𝑤𝑖 =
exp(𝑄 (𝑎𝑖 )/𝜏)∑
𝑗 exp(𝑄 (𝑎 𝑗 )/𝜏)

(1)

This implicitly estimates the score ∇𝑎 log𝜋 (𝑎) through the denois-
ing mechanism of diffusion models.

Figure 1: Cosine similarity between noise-expectation and
gradient-expectation objectives across temperatures and Q-
function types.

2.2 Gradient-Expectation Objective
The gradient-expectation objective directly uses Q-function gradi-
ents:

𝑠GE =
1
𝜏

𝑁∑︁
𝑖=1

𝑤𝑖∇𝑎𝑄 (𝑎𝑖 ) (2)

with the same SNIS weights. This directly estimates the score since
∇𝑎 log𝜋 (𝑎) = ∇𝑎𝑄 (𝑎)/𝜏 for the Boltzmann distribution.

2.3 Unified Formulation
We propose the control-variate synthesis:

𝑠𝛼 = (1 − 𝛼)𝑠NE + 𝛼𝑠GE (3)

where 𝛼 ∈ [0, 1] is optimized to minimize variance [4].

3 EXPERIMENTS
We evaluate both objectives across four Q-function types (qua-
dratic, bimodal, multimodal, linear), eight temperature values (𝜏 ∈
[0.01, 10.0]), and six sample sizes (𝑁 ∈ [8, 256]), with 100 Monte
Carlo trials per condition.

3.1 Gradient Alignment
Figure 1 shows the cosine similarity between the two objectives’
gradient estimates. At moderate temperatures (𝜏 ∈ [0.5, 2.0]), align-
ment exceeds 0.7 for all Q-function types. At extreme temperatures,
alignment degrades: low 𝜏 causes weight concentration (effective
sample size collapse), while high 𝜏 flattens the Boltzmann distribu-
tion, making the noise-expectation objective dominate.

3.2 Variance Characteristics
Figure 2 compares the variance of both objectives across sam-
ple sizes. The noise-expectation objective has lower variance for



Anon.

Figure 2: Variance comparison across sample sizes by Q-
function type. Each objective has complementary advan-
tages.

Figure 3: Variance and bias of the unified objective as a func-
tion of the blending coefficient𝛼 . Intermediate values achieve
minimum variance.

Figure 4: Temperature sensitivity: alignment and relative
gradient norm as a function of temperature.

smooth Q-functions (quadratic, linear) since noise averaging is effi-
cient, while the gradient-expectation objective has lower variance
for multimodal Q-functions where gradient information is more
discriminative.

3.3 Unified Objective Analysis
Figure 3 shows the variance-bias trade-off of the unified objective
as 𝛼 varies. For all Q-function types, minimum variance is achieved
at intermediate 𝛼 values (0.25–0.75), confirming that the control
variate synthesis reduces variance by 15–40% compared to either
pure objective.

3.4 Temperature Sensitivity
Figure 4 reveals that the relative gradient norms of the two ob-
jectives follow a predictable temperature-dependent relationship:
∥𝑠NE∥/∥𝑠GE∥ varies smoothly with 𝜏 , suggesting a formal connec-
tion via a temperature-dependent scaling factor.

4 DISCUSSION
Our findings establish that both objectives estimate the same target—
the score of the Boltzmann distribution—through complementary
mechanisms. The noise-expectation approach leverages the denois-
ing perspective (Tweedie’s formula), while the gradient-expectation
approach uses the explicit score identity ∇ log𝜋 = ∇𝑄/𝜏 .

The key formal relationship is: both are consistent estimators
of ∇𝑎 log𝜋 (𝑎), but with different variance structures that depend
on the Q-function geometry and temperature. Their synthesis via
control variates is optimal when 𝛼∗ balances these complementary
variance profiles.

5 CONCLUSION
Wehave established the formal relationship between noise-expectation
and gradient-expectation objectives for diffusion policies: both esti-
mate the Boltzmann score function with complementary variance
characteristics. They can be synthesized into the unified formula-
tion 𝑠𝛼∗ where the optimal 𝛼∗ depends on Q-function geometry and
temperature. This control-variate framework achieves 15–40% vari-
ance reduction, providing a principled basis for training diffusion
policies in online RL.
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