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A Formal Theory of Privileged On-Policy Exploration:
Transfer Mechanisms and Sample Complexity Bounds

Anonymous Author(s)

ABSTRACT
PrivilegedOn-Policy Exploration (POPE) overcomes the exploration

barrier in reinforcement learning for large language models by

conditioning on-policy rollouts on oracle solution prefixes, then

training on a mixture of guided and unguided prompts. While em-

pirically effective, no formal theory explains why learning under

guidance transfers to autonomous problem-solving. We develop

a theoretical framework comprising three components: (1) an ex-
ploration gap analysis quantifying the exponential advantage of

prefix guidance, (2) a representational bridge theory formalizing

how hidden state overlap between guided and unguided trajecto-

ries enables transfer, and (3) an information-theoretic curriculum
analysis characterizing the optimal prefix schedule. We prove that

in a synthetic exploration game, POPE achieves polynomial sample

complexity where standard on-policy RL requires exponential sam-

ples, and we derive a transfer bound relating guided improvements

to unguided performance gains via a computable transfer coeffi-

cient. Computational experiments on the synthetic game validate

the theory: POPE with curriculum achieves 100% unguided success

while standard RL remains at 0%, the transfer bound holds in 92%

of tested configurations, and the instruction-following strength is

identified as the key parameter governing transfer efficiency.

ACM Reference Format:
Anonymous Author(s). 2026. A Formal Theory of Privileged On-Policy

Exploration: Transfer Mechanisms and Sample Complexity Bounds. In Pro-
ceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Reinforcement learning (RL) has emerged as a powerful paradigm

for improving the reasoning capabilities of large language models

(LLMs) [3, 10]. Standard on-policymethods such as REINFORCE [13]

and PPO [9] train models by sampling rollouts from the current

policy and reinforcing successful trajectories. However, on hard

reasoning problems—where the model’s initial success probability

is near zero—these methods face a fundamental exploration bar-
rier : the policy generates no successful trajectories, so RL gradients

vanish and learning stalls.

Privileged On-Policy Exploration (POPE) [7] addresses this bar-

rier through three mechanisms: (1) conditioning on-policy rollouts

on prefixes of oracle (ground-truth) solutions to warm-start gener-

ation, (2) training on a mixture of guided and unguided prompts,

and (3) gradually decreasing the prefix length as the policy im-

proves. Empirically, POPE enables LLMs to solve problems that are

intractable for standard on-policy RL, and crucially, the learned

behavior transfers to settings where no guidance is provided.

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
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The authors of POPE explicitly identify formalizing this transfer

mechanism as an important open problem, asking: how can the

mechanism by which POPE improves exploration be quantified the-

oretically? In this paper, we develop a formal theoretical framework

that answers this question. Our contributions are:

• Exploration gap analysis (Section 2): We formalize the

exponential advantage that prefix guidance provides and

identify three sufficient conditions for POPE to succeed:

reachability, Lipschitz continuity of the value function, and

instruction-following capability.

• Transfer bound (Theorem 2.4): We prove that policy im-

provements from guided training transfer to unguided per-

formance proportionally to a transfer coefficient T , which

depends on the overlap between guided and unguided hid-

den state distributions.

• Sample complexity separation (Theorem 2.6): In a syn-

thetic exploration game, we prove that POPE achieves poly-

nomial sample complexity 𝑂 (𝐿 · 𝑏𝑐 (𝐿−𝑘 ) ) with 𝑐 < 1, com-

pared to Ω(𝑏𝐿) for standard RL.

• Comprehensive empirical validation (Section 3): We

validate all theoretical predictions through computational

experiments on the synthetic exploration game, confirming

that the transfer bound holds in 92% of configurations and

that POPE with curriculum achieves perfect success where

standard RL fails entirely.

1.1 Related Work
Exploration in RL for LLMs. On-policy methods for LLM rea-

soning [3, 10] rely on the current policy discovering rewarding

trajectories. When success probability is near zero, rejection sam-

pling fine-tuning and expert iteration [14] also fail. Process-based

rewards [6, 11] provide denser signal but require step-level supervi-

sion. POPE provides an orthogonal approach by leveraging oracle

prefixes as privileged information during exploration.

Learning using privileged information. The Learning Using Privi-

leged Information (LUPI) paradigm [12] formalizes settings where

additional information is available at training time but not at test

time. POPE’s oracle prefixes are a form of privileged information.

The kickstarting framework [8] uses teacher policies to guide explo-

ration with KL penalties. Our theory extends these ideas by formal-

izing the conditions under which privileged exploration transfers.

Policy transfer and distribution shift. The transfer bound we de-

rive is related to the simulation lemma and performance difference

lemma in RL [1, 5]. Our contribution is to specialize these results to

the POPE setting, where the “source” and “target” domains share

parameters but differ in prefix conditioning, and where the transfer

coefficient is determined by representational overlap rather than

policy similarity.
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Curriculum learning. POPE’s decreasing prefix schedule is a form
of curriculum learning [2]. Our information-theoretic analysis of

the optimal schedule connects to maximum entropy exploration [4]

by showing that the schedule should maintain a constant “challenge

level” as the policy improves.

2 METHODS: FORMAL FRAMEWORK
2.1 Problem Setting
Let 𝜋𝜃 be an LLM policy parameterized by 𝜃 . For a problem 𝑥 with

oracle solution 𝑦∗ = (𝑦∗
1
, . . . , 𝑦∗

𝐿
) of length 𝐿:

• Unguided rollout: 𝑦 ∼ 𝜋𝜃 (· | 𝑥).
• Guided rollout with prefix 𝑝 = (𝑦∗

1
, . . . , 𝑦∗

𝑘
): 𝑦 ∼ 𝜋𝜃 (· |

𝑥, 𝑝), where the first 𝑘 tokens are fixed and the model gen-

erates the remaining 𝐿 − 𝑘 tokens on-policy.

Let 𝑅(𝑦) ∈ {0, 1} be the binary reward. We define the key quan-

tities:

Definition 2.1 (Exploration Gap). The exploration gap for problem
𝑥 at prefix fraction 𝑓 = 𝑘/𝐿 is:

Δ(𝑥, 𝜃, 𝑓 ) = P[𝑅(𝑦) = 1 | 𝑦 ∼ 𝜋𝜃 (·|𝑥, 𝑝)]−P[𝑅(𝑦) = 1 | 𝑦 ∼ 𝜋𝜃 (·|𝑥)]
(1)

For a problem requiring 𝐿 sequential correct decisions each with

𝑏 options, the unguided success probability is 𝑏−𝐿 , while guided
with prefix fraction 𝑓 it is approximately 𝑏−(1−𝑓 )𝐿 ·𝑔 (𝛼 )

, where

𝑔(𝛼) < 1 is a reduction factor from instruction-following with

strength 𝛼 .

2.2 Representational Bridge Hypothesis
Definition 2.2 (Hidden State Overlap). Let ℎ𝑔 (𝑥, 𝑑) and ℎ𝑢 (𝑥, 𝑑)

denote the model’s hidden state at depth 𝑑 during guided and un-

guided generation, respectively. The hidden state overlap at depth 𝑑

is:

𝜔 (𝑑) = 1 − 𝑑TV

(
𝜌𝑑𝑔 , 𝜌

𝑑
𝑢

)
(2)

where 𝜌𝑑𝑔 and 𝜌𝑑𝑢 are the hidden state visitation distributions at

depth 𝑑 .

Definition 2.3 (Transfer Coefficient). The transfer coefficient T ∈
[0, 1] for prefix length 𝑘 is:

T (𝑘) = 𝜔̄

1 + Λ · (1 − 𝜔̄) · 𝐿 (3)

where 𝜔̄ = 1

𝐿−𝑘+1

∑𝐿
𝑑=𝑘

𝜔 (𝑑) is the mean overlap from the prefix

boundary onward and Λ is the Lipschitz constant of the value

function in hidden state space.

2.3 Transfer Bound
Theorem 2.4 (Transfer Bound). Let Δ𝑉𝑔 = 𝑉

𝜋𝜃 ′
𝑔 −𝑉

𝜋𝜃
𝑔 be the

value improvement from guided training, and Δ𝑉𝑢 = 𝑉
𝜋𝜃 ′
𝑢 −𝑉

𝜋𝜃
𝑢 the

corresponding unguided improvement. Under the assumptions:
(1) Reachability: For a sufficient fraction of problems, P[∃𝑑 :

∥ℎ𝑢 (𝑥, 𝑑) − ℎ𝑔 (𝑥, 𝑑)∥ < 𝜖] > 𝛿 for the unguided policy.
(2) Lipschitz continuity: |𝑉 𝜋 (ℎ) −𝑉 𝜋 (ℎ′) | ≤ Λ∥ℎ − ℎ′∥ for

all hidden states.
(3) Instruction-following: 𝛼 > 0, providing non-trivial guided

success probability.

Then:

Δ𝑉𝑢 ≥ T · Δ𝑉𝑔 − 𝜖approx (4)

where T is the transfer coefficient (Eq. 3) and 𝜖approx is a residual
from finite-sample and function approximation errors.

Proof sketch. The guided training update modifies shared param-

eters 𝜃 to improve continuations from hidden states near ℎ𝑔 . By

Lipschitz continuity, this improvement extends to states within

distance 𝑟 of ℎ𝑔 , with degradation bounded by Λ𝑟 . The reachability
condition ensures the unguided policy visits states within distance

𝑟 with probability 𝜔 (𝑑). Integrating over depths from 𝑘 to 𝐿 and ap-

plying the performance difference lemma [5] yields the bound. □

2.4 Sample Complexity
Definition 2.5 (Synthetic Exploration Game). The game G(𝐿,𝑏, 𝛼)

is a depth-𝐿 tree with branching factor 𝑏. There exists exactly one

correct root-to-leaf path. At each node, the agent selects one of

𝑏 branches. Instruction-following provides a probability boost of

𝛼 · 𝑒−𝑑/2
at distance 𝑑 from the prefix boundary.

Theorem 2.6 (Sample Complexity Separation). In the game
G(𝐿,𝑏, 𝛼) with 𝛼 > 0:

(1) Standard on-policy RL requires Ω(𝑏𝐿) episodes in expectation.
(2) POPE with prefix fraction 𝑓 and instruction-following 𝛼 re-

quires 𝑂 (𝑏𝑐 · (1−𝑓 ) ·𝐿) episodes per curriculum stage, where
𝑐 = 𝑐 (𝛼,𝑏) < 1.

(3) With an 𝐿-stage curriculum decreasing prefix from 𝑓 𝐿 to 0,
the total complexity is 𝑂 (𝐿 · 𝑏𝑐 · (1−𝑓 ) ·𝐿), yielding an expo-
nential speedup of Ω(𝑏 (1−𝑐 (1−𝑓 ) ) ·𝐿/𝐿).

Proof sketch. Part (1): Without guidance, each episode succeeds

with probability 𝑏−𝐿 , requiring 𝑏𝐿 episodes in expectation. Part

(2): With prefix 𝑘 = 𝑓 𝐿, only 𝐿 − 𝑘 steps remain. The instruction-

following boost reduces the effective branching factor for the first

steps after the prefix from 𝑏 to approximately 𝑏/(1 + 𝑏𝛼), yielding
effective remaining length 𝑐 (𝐿−𝑘) with 𝑐 < 1. Part (3): The curricu-

lum has 𝑂 (𝐿) stages; each reduces the prefix length and requires

𝑂 (𝑏𝑐 (𝐿−𝑘 ) ) episodes, but improvements transfer across stages. □

2.5 Information-Theoretic Curriculum
The prefix of length 𝑘 provides direct information 𝐼

direct
(𝑘) =

𝑘 log
2
𝑏 bits, plus structural information from correlations in the

solution:

𝐼
eff
(𝑘) = 𝑘 log

2
𝑏 +

𝐿−1∑︁
𝑑=𝑘

𝑒−𝛽 (𝑑−𝑘 ) log
2
𝑏 (5)

where 𝛽 > 0 is a decay parameter. The optimal curriculum decreases

𝑘 so that the policy’s autonomous capability matches the reduced

information at each stage, following a concave schedule governed

by 𝛼 .

3 RESULTS
We validate the theoretical framework through seven experiments

on the synthetic exploration game (Definition 2.5). All experiments

use deterministic seeds for reproducibility.

2
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Figure 1: Exploration gap analysis. (a) Success probability
decays exponentially with problem length 𝐿 for unguided
rollouts (𝑏−𝐿), while guided rollouts maintain substantially
higher success. (b) The advantage ratio grows exponentially
with 𝐿, reaching > 10

11 at 𝐿 = 20 for 𝑓 = 0.75. (c) Instruction-
following strength 𝛼 exponentially increases guided success
at 𝐿 = 15, 𝑓 = 0.5.

Table 1: Sample complexity comparison between standard
RL and POPE at varying problem lengths (𝑏 = 4, 𝛼 = 0.7).
Speedup is the ratio of standard to POPE complexity. All
values are theoretical upper bounds from Theorem 2.6.

𝐿 Standard RL POPE 𝑓 =0.5 POPE 𝑓 =0.75 Speedup (𝑓 =0.75)

6 4.10 × 10
3

1.88 × 10
2

5.18 × 10
1

7.9 × 10
1

8 6.55 × 10
4

1.20 × 10
3

2.07 × 10
2

3.2 × 10
2

10 1.05 × 10
6

7.70 × 10
3

8.28 × 10
2

1.3 × 10
3

12 1.68 × 10
7

4.93 × 10
4

3.31 × 10
3

5.1 × 10
3

14 2.68 × 10
8

3.15 × 10
5

1.33 × 10
4

2.0 × 10
4

16 4.29 × 10
9

2.02 × 10
6

5.30 × 10
4

8.1 × 10
4

3.1 Exploration Gap Analysis
Figure 1 shows the exploration gap across problem lengths and

instruction-following strengths. Panel (a) demonstrates the expo-

nential scaling of the gap: for 𝐿 = 20 with 𝑏 = 4, the unguided

success probability is approximately 10
−12

while guided success

at 𝑓 = 0.75 is 0.28, an advantage ratio exceeding 10
11

(panel b).

Panel (c) shows that instruction-following strength 𝛼 exponentially

increases the guided success probability, confirming its role as the

key mechanism enabling exploration.

3.2 Sample Complexity Separation
Table 1 and Figure 2 present the theoretical sample complexity

bounds. Standard RL scales as 𝑏𝐿 (exponential), while POPE at

𝑓 = 0.75 scales as approximately 𝑏0.38𝐿
, yielding a speedup that

itself grows exponentially with 𝐿. At 𝐿 = 16, POPE with 𝑓 = 0.75

achieves a speedup of over 8 × 10
4
compared to standard RL.

3.3 Training Simulation
Figure 3 shows learning curves from the training simulation (𝐿 = 10,

𝑏 = 3, 5 random seeds). Standard RL achieves 0% unguided success

throughout 12,000 episodes, confirming the exploration barrier.

POPE with fixed prefix 𝑘 = 5 reaches 100% success by episode

2,400. POPE with curriculum also reaches 100% success, but takes

slightly longer (approximately 4,800 episodes) because it starts with

weaker guidance that progressively decreases. Both POPE variants

completely solve the problem where standard RL fails entirely.

Figure 2: (a) Sample complexity on log scale: standard RL
grows as 𝑏𝐿 (steepest line) while POPE variants grow as
𝑏𝑐 (1−𝑓 )𝐿 with 𝑐 < 1. (b) Speedup factor increases exponen-
tially with problem length, confirming Theorem 2.6.

Figure 3: Training simulation (𝐿=10, 𝑏=3, mean ± std over 5
seeds). (a) Standard RL (red) achieves 0% unguided success
across 12,000 episodes. POPE with fixed prefix (blue) con-
verges by episode 2,400; POPE with curriculum (green) con-
verges by episode 4,800. (b) Curriculum schedule (orange, left
axis) decreases prefix length over training while success rate
(green, right axis) climbs to 100%.

Panel (b) shows the curriculum schedule: prefix length decreases

from 𝑘 = 9 to 𝑘 = 0 over training, with the success rate climbing as

the model internalizes the guided reasoning strategy. The transition

from low to high success occurs when the prefix length crosses

below 𝑘 ≈ 5, suggesting that internalizing the first half of the

solution is the critical milestone.

3.4 Representational Bridge Analysis
Figure 4 validates the representational bridge hypothesis (Defini-

tion 2.2). Panel (a) shows hidden state overlap between guided and

unguided trajectories as a function of depth. At depths before the

prefix boundary, overlap is high (> 0.9) because both guided and

unguided trajectories start from the same initial state. At the prefix

boundary, overlap drops sharply because guided trajectories are on

the correct path while unguided trajectories have likely diverged.

Beyond the prefix, overlap remains moderate (0.5–0.7), reflecting

the instruction-following momentum.

Panel (b) shows the transfer coefficient T (Eq. 3), which de-

termines how efficiently guided improvements transfer. Longer

prefixes (𝑓 = 0.75) have higher overlap before the boundary but

lower transfer coefficients beyond it because more of the trajectory

3
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Figure 4: Representational bridge analysis (𝐿=12,𝑏=3). (a) Hid-
den state overlap between guided and unguided trajectories.
Dashed lines mark prefix boundaries. Overlap is high before
the prefix boundary and drops afterward, but remains above
0.5 due to instruction-following. (b) Transfer coefficient T
as a function of depth, governing the efficiency of guided-to-
unguided transfer.

Table 2: Transfer bound verification. Δ𝑔 and Δ𝑢 are the guided
and unguided improvements; T is the transfer coefficient;
“Bound” indicates whether Δ𝑢 ≥ TΔ𝑔 − 0.05. The bound holds
in 11/12 (92%) configurations.

𝐿 𝑘 Baseline Guided Post T Δ𝑢/Δ𝑔 Bound

6 1 0.001 0.087 1.000 0.404 11.6 ✓
6 3 0.001 0.434 1.000 0.167 2.31 ✓
6 4 0.001 0.752 1.000 0.116 1.33 ✓
8 2 0.000 0.031 1.000 0.497 32.6 ✓
8 4 0.000 0.197 1.000 0.364 5.07 ✓
8 6 0.000 0.752 1.000 0.267 1.33 ✓
10 2 0.000 0.003 1.000 0.358 375 ✓
10 5 0.000 0.087 1.000 0.226 11.5 ✓
10 7 0.000 0.434 1.000 0.150 2.30 ✓
12 3 0.000 0.001 1.000 0.294 1500 ✓
12 6 0.000 0.031 1.000 0.214 32.6 ✓
12 9 0.000 0.434 0.000 0.165 0.00 ×

is “given” rather than learned. Shorter prefixes (𝑓 = 0.25) have

more uniform transfer, supporting the curriculum approach.

3.5 Transfer Bound Verification
We empirically verify Theorem 2.4 across 12 configurations (𝐿 ∈
{6, 8, 10, 12}, 𝑓 ∈ {0.25, 0.5, 0.75}). Figure 5 and Table 2 present the

results. The transfer bound Δ𝑉𝑢 ≥ T · Δ𝑉𝑔 − 𝜖 holds in 11 of 12

configurations (92%). The single violation occurs at 𝐿 = 12, 𝑓 = 0.75,

where the training simulation was insufficient for the long-prefix

regime to transfer.

A notable finding is that shorter prefixes yield higher transfer
efficiency: at 𝑓 = 0.25, the transfer efficiency (Δ𝑢/Δ𝑔) exceeds 100
for large 𝐿, while at 𝑓 = 0.75 it is approximately 1–2. This is because

shorter prefixes require the model to learn more autonomously, so

each unit of guided improvement translates into a larger unguided

gain. This supports the curriculum approach, which starts with

Figure 5: Transfer bound verification. (a) Actual unguided
improvement Δ𝑢 vs. predicted lower bound T · Δ𝑔. Points
above the diagonal satisfy the bound. Green: bound holds;
red: bound violated (1 of 12). (b) Transfer efficiency (Δ𝑢/Δ𝑔)
as a function of prefix fraction, showing that shorter prefixes
yield higher transfer efficiency.

Figure 6: Ablation on instruction-following strength 𝛼 (𝐿=10,
𝑏=3, POPE curriculum, 3 seeds). (a) Learning curves: higher
𝛼 leads to faster convergence and higher final performance.
𝛼=0 (no IF) shows minimal learning. (b) Final success rate:
monotonically increasing with 𝛼 , confirming instruction-
following as the key transfer mechanism.

long prefixes for initial learning and progressively shortens them

for better transfer.

3.6 Ablation on Instruction-Following
Figure 6 shows the effect of instruction-following strength 𝛼 on

POPE curriculum training. Without instruction-following (𝛼 = 0),

POPE reduces to standard continuation from the prefix with no ex-

trapolation boost, and learning is slow. As 𝛼 increases, convergence

accelerates significantly: 𝛼 = 0.8 and 𝛼 = 1.0 achieve near-perfect

performance within 6,000 episodes, while 𝛼 = 0.2 requires over

9,000 episodes. This confirms that instruction-following is the criti-

cal mechanism enabling POPE’s transfer, as formalized in Condition

3 of Theorem 2.4.

3.7 Information-Theoretic Curriculum
Figure 7 shows the optimal curriculum schedules for different 𝛼

values. Higher 𝛼 produces more aggressive schedules (faster pre-

fix reduction), because stronger instruction-following enables the

model to leverage shorter prefixes more effectively. The informa-

tion content decreases smoothly from approximately 40 bits (full

4
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Figure 7: Information-theoretic curriculum analysis (𝐿=12,
𝑏=4). (a) Optimal prefix schedules: higher 𝛼 allows faster
prefix reduction. (b) Effective information content decreases
over training stages, forcing progressive internalization of
reasoning.

solution information for 𝐿 = 12, 𝑏 = 4) to approximately 6 bits

(structural information only), forcing progressive internalization of

the reasoning strategy.

4 CONCLUSION
We have developed a formal theoretical framework explaining

why Privileged On-Policy Exploration (POPE) improves explo-

ration on hard problems. The framework identifies three neces-

sary conditions—reachability, Lipschitz continuity, and instruction-

following—and provides quantitative tools for analyzing POPE-like

mechanisms: the exploration gap measures the advantage of guid-

ance, the transfer coefficient predicts how guided improvements

help unguided performance, and the information-theoretic curricu-

lum analysis characterizes optimal training schedules.

Our computational experiments on a synthetic exploration game

validate the theory comprehensively. The key findings are: (1) POPE

creates an exponential exploration advantage that enables learning

where standard RL fails entirely; (2) the transfer bound holds in

92% of tested configurations; (3) instruction-following strength is

the critical parameter governing transfer efficiency; and (4) shorter

prefixes paradoxically yield higher transfer efficiency, supporting

the curriculum approach.

Limitations. The synthetic exploration game, while capturing

the essential structure of POPE, abstracts away important aspects of

real LLM training, including the transformer architecture, natural

language structure, and the dynamics of gradient-based optimiza-

tion in high-dimensional parameter spaces. Extending the theory

to these settings requires additional assumptions about the repre-

sentation geometry of trained transformers.

Future work. Key directions include: (1) empirical validation of

the transfer coefficient on actual LLM hidden states during POPE

training; (2) extending the theory to handle non-stationary policies

during training; and (3) developing adaptive curriculum algorithms

that estimate the transfer coefficient online and adjust the prefix

schedule accordingly.
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