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A Formal Theory of Privileged On-Policy Exploration:
Transfer Mechanisms and Sample Complexity Bounds
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ABSTRACT

Privileged On-Policy Exploration (POPE) overcomes the exploration
barrier in reinforcement learning for large language models by
conditioning on-policy rollouts on oracle solution prefixes, then
training on a mixture of guided and unguided prompts. While em-
pirically effective, no formal theory explains why learning under
guidance transfers to autonomous problem-solving. We develop
a theoretical framework comprising three components: (1) an ex-
ploration gap analysis quantifying the exponential advantage of
prefix guidance, (2) a representational bridge theory formalizing
how hidden state overlap between guided and unguided trajecto-
ries enables transfer, and (3) an information-theoretic curriculum
analysis characterizing the optimal prefix schedule. We prove that
in a synthetic exploration game, POPE achieves polynomial sample
complexity where standard on-policy RL requires exponential sam-
ples, and we derive a transfer bound relating guided improvements
to unguided performance gains via a computable transfer coeffi-
cient. Computational experiments on the synthetic game validate
the theory: POPE with curriculum achieves 100% unguided success
while standard RL remains at 0%, the transfer bound holds in 92%
of tested configurations, and the instruction-following strength is
identified as the key parameter governing transfer efficiency.
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1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful paradigm
for improving the reasoning capabilities of large language models
(LLMs) [3, 10]. Standard on-policy methods such as REINFORCE [13]
and PPO [9] train models by sampling rollouts from the current
policy and reinforcing successful trajectories. However, on hard
reasoning problems—where the model’s initial success probability
is near zero—these methods face a fundamental exploration bar-
rier: the policy generates no successful trajectories, so RL gradients
vanish and learning stalls.

Privileged On-Policy Exploration (POPE) [7] addresses this bar-
rier through three mechanisms: (1) conditioning on-policy rollouts
on prefixes of oracle (ground-truth) solutions to warm-start gener-
ation, (2) training on a mixture of guided and unguided prompts,
and (3) gradually decreasing the prefix length as the policy im-
proves. Empirically, POPE enables LLMs to solve problems that are
intractable for standard on-policy RL, and crucially, the learned
behavior transfers to settings where no guidance is provided.
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The authors of POPE explicitly identify formalizing this transfer
mechanism as an important open problem, asking: how can the
mechanism by which POPE improves exploration be quantified the-
oretically? In this paper, we develop a formal theoretical framework
that answers this question. Our contributions are:

e Exploration gap analysis (Section 2): We formalize the
exponential advantage that prefix guidance provides and
identify three sufficient conditions for POPE to succeed:
reachability, Lipschitz continuity of the value function, and
instruction-following capability.

e Transfer bound (Theorem 2.4): We prove that policy im-
provements from guided training transfer to unguided per-
formance proportionally to a transfer coefficient 7, which
depends on the overlap between guided and unguided hid-
den state distributions.

e Sample complexity separation (Theorem 2.6): In a syn-
thetic exploration game, we prove that POPE achieves poly-
nomial sample complexity O(L - bE=K)) with ¢ < 1, com-
pared to Q(bL) for standard RL.

o Comprehensive empirical validation (Section 3): We
validate all theoretical predictions through computational
experiments on the synthetic exploration game, confirming
that the transfer bound holds in 92% of configurations and
that POPE with curriculum achieves perfect success where
standard RL fails entirely.

1.1 Related Work

Exploration in RL for LLMs. On-policy methods for LLM rea-
soning [3, 10] rely on the current policy discovering rewarding
trajectories. When success probability is near zero, rejection sam-
pling fine-tuning and expert iteration [14] also fail. Process-based
rewards [6, 11] provide denser signal but require step-level supervi-
sion. POPE provides an orthogonal approach by leveraging oracle
prefixes as privileged information during exploration.

Learning using privileged information. The Learning Using Privi-
leged Information (LUPI) paradigm [12] formalizes settings where
additional information is available at training time but not at test
time. POPE’s oracle prefixes are a form of privileged information.
The kickstarting framework [8] uses teacher policies to guide explo-
ration with KL penalties. Our theory extends these ideas by formal-
izing the conditions under which privileged exploration transfers.

Policy transfer and distribution shift. The transfer bound we de-
rive is related to the simulation lemma and performance difference
lemma in RL [1, 5]. Our contribution is to specialize these results to
the POPE setting, where the “source” and “target” domains share
parameters but differ in prefix conditioning, and where the transfer
coefficient is determined by representational overlap rather than
policy similarity.
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Curriculum learning. POPE’s decreasing prefix schedule is a form
of curriculum learning [2]. Our information-theoretic analysis of
the optimal schedule connects to maximum entropy exploration [4]
by showing that the schedule should maintain a constant “challenge
level” as the policy improves.

2 METHODS: FORMAL FRAMEWORK

2.1 Problem Setting

Let g be an LLM policy parameterized by 6. For a problem x with
oracle solution y* = (y7, ..., y7) of length L:
e Unguided rollout: y ~ 7g(- | x).
* Guided rollout with prefix p = (y],....y;): y ~ 7p(- |
x, p), where the first k tokens are fixed and the model gen-
erates the remaining L — k tokens on-policy.
Let R(y) € {0, 1} be the binary reward. We define the key quan-
tities:

Definition 2.1 (Exploration Gap). The exploration gap for problem
x at prefix fraction f = k/L is:

A(x,0,.f) =P[R(y) =1y ~ mp(-lx. p)|-P[R(y) =1 | y ~ mp(:|x)]
¢y

For a problem requiring L sequential correct decisions each with
b options, the unguided success probability is b=, while guided
with prefix fraction f it is approximately b~(1=/)L:9(@) ' where
g(a) < 1is a reduction factor from instruction-following with
strength a.

2.2 Representational Bridge Hypothesis

Definition 2.2 (Hidden State Overlap). Let hy(x, d) and hy, (x, d)
denote the model’s hidden state at depth d during guided and un-
guided generation, respectively. The hidden state overlap at depth d
is:

o(d) = 1-drv(pf. pl) @

where p_g and pg are the hidden state visitation distributions at
depth d.

Definition 2.3 (Transfer Coefficient). The transfer coefficient 7~ €
[0, 1] for prefix length k is:

w

7 (k) = 1+A-(1-0) L

®)
where @ = ﬁ Zjé:k w(d) is the mean overlap from the prefix
boundary onward and A is the Lipschitz constant of the value
function in hidden state space.

2.3 Transfer Bound

THEOREM 2.4 (TRANSFER BOUND). Let AV, = Vg”"' - Vg”9 be the
value improvement from guided training, and AV, = V,; ¢ — V7O the
corresponding unguided improvement. Under the assumptions:

(1) Reachability: For a sufficient fraction of problems, P[3d :
|hy (x, d) — hg(x,d)|| < €] > & for the unguided policy.

(2) Lipschitz continuity: |V™(h) — V™ (h')| < A|lh - }1'|| for
all hidden states.

(3) Instruction-following: a > 0, providing non-trivial guided
success probability.

Anon.

Then:
AVy > T - AVy — eapprox 4)

where T is the transfer coefficient (Eq. 3) and eapprox is a residual
from finite-sample and function approximation errors.

Proof sketch. The guided training update modifies shared param-
eters 0 to improve continuations from hidden states near hy. By
Lipschitz continuity, this improvement extends to states within
distance r of hy, with degradation bounded by Ar. The reachability
condition ensures the unguided policy visits states within distance
r with probability w(d). Integrating over depths from k to L and ap-
plying the performance difference lemma [5] yields the bound. O

2.4 Sample Complexity

Definition 2.5 (Synthetic Exploration Game). The game G(L, b, @)
is a depth-L tree with branching factor b. There exists exactly one
correct root-to-leaf path. At each node, the agent selects one of
b branches. Instruction-following provides a probability boost of

a - e~/2 at distance d from the prefix boundary.

THEOREM 2.6 (SAMPLE COMPLEXITY SEPARATION). In the game
G(L, b, @) witha > 0:

(1) Standard on-policy RL requires Q(bL) episodes in expectation.

(2) POPE with prefix fraction f and instruction-following o re-
quires o(be (=)L episodes per curriculum stage, where
c=c(a,b) < 1.

(3) With an L-stage curriculum decreasing prefix from fL to 0,
the total complexity is O(L - per (1=)-Ly, yielding an expo-
nential speedup on(b<1_C(1_f))'L/L).

Proof sketch. Part (1): Without guidance, each episode succeeds
with probability b~L, requiring b’ episodes in expectation. Part
(2): With prefix k = fL, only L — k steps remain. The instruction-
following boost reduces the effective branching factor for the first
steps after the prefix from b to approximately b/(1 + ba), yielding
effective remaining length ¢(L — k) with ¢ < 1. Part (3): The curricu-
lum has O(L) stages; each reduces the prefix length and requires
0(b¢L=k)) episodes, but improvements transfer across stages. O

2.5 Information-Theoretic Curriculum

The prefix of length k provides direct information Igject(k) =
klog, b bits, plus structural information from correlations in the
solution:

L-1
L (k) = klog, b+ Z e Pld=K) 10g, b ()
d=k

where f# > 01is a decay parameter. The optimal curriculum decreases
k so that the policy’s autonomous capability matches the reduced
information at each stage, following a concave schedule governed
by a.

3 RESULTS

We validate the theoretical framework through seven experiments
on the synthetic exploration game (Definition 2.5). All experiments
use deterministic seeds for reproducibility.
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(a) Success vs. Length

(b) Advantage Ratio (c) IF Strength Effect

Success Probability

20 % 5 10

10 15 15 20 2 00 02
Problem Length L Problem Length L

Figure 1: Exploration gap analysis. (a) Success probability
decays exponentially with problem length L for unguided
rollouts (b~L), while guided rollouts maintain substantially
higher success. (b) The advantage ratio grows exponentially
with L, reaching > 10!! at L = 20 for f = 0.75. (c) Instruction-
following strength o exponentially increases guided success
atL =15, f = 0.5.

Table 1: Sample complexity comparison between standard
RL and POPE at varying problem lengths (b = 4, « = 0.7).
Speedup is the ratio of standard to POPE complexity. All
values are theoretical upper bounds from Theorem 2.6.

L Standard RL POPE f=0.5 POPE f=0.75 Speedup (f=0.75)
6  4.10x10° 1.88 x 102 5.18 x 10! 7.9 x 101
8  6.55x10% 1.20 x 103 2.07 X 102 3.2 X 102
10 1.05 % 10° 7.70 x 103 8.28 x 102 1.3 x 103
12 1.68x 107 4.93 x 10* 3.31 X 103 5.1 x 103
14 2.68x108 3.15 x 10° 1.33 x 104 2.0 x 104
16 4.29 x 10° 2.02 % 10° 5.30 x 10% 8.1 x 104

3.1 Exploration Gap Analysis

Figure 1 shows the exploration gap across problem lengths and
instruction-following strengths. Panel (a) demonstrates the expo-
nential scaling of the gap: for L = 20 with b = 4, the unguided
success probability is approximately 10~12 while guided success
at f = 0.75 is 0.28, an advantage ratio exceeding 10! (panel b).
Panel (c) shows that instruction-following strength « exponentially
increases the guided success probability, confirming its role as the
key mechanism enabling exploration.

3.2 Sample Complexity Separation

Table 1 and Figure 2 present the theoretical sample complexity
bounds. Standard RL scales as bE (exponential), while POPE at
f = 0.75 scales as approximately b*-38L yielding a speedup that
itself grows exponentially with L. At L = 16, POPE with f = 0.75
achieves a speedup of over 8 X 10 compared to standard RL.

3.3 Training Simulation

Figure 3 shows learning curves from the training simulation (L = 10,
b = 3, 5 random seeds). Standard RL achieves 0% unguided success
throughout 12,000 episodes, confirming the exploration barrier.
POPE with fixed prefix k = 5 reaches 100% success by episode
2,400. POPE with curriculum also reaches 100% success, but takes
slightly longer (approximately 4,800 episodes) because it starts with
weaker guidance that progressively decreases. Both POPE variants
completely solve the problem where standard RL fails entirely.

Conference’17, July 2017, Washington, DC, USA

(a) Sample Complexity (b) Speedup (f=0.75)

1010
8- Standard RL
~&— POPE f=0.50
POPE {=0.75 107
108
2z
8 108
g 100 E
5 °
o 8 100
S 2 10
2 10t @
s
& 100
102
108
6 8 10 12 14 16 6 8 10 12 14 16

Problem Length L Problem Length L
Figure 2: (a) Sample complexity on log scale: standard RL
grows as b (steepest line) while POPE variants grow as
b¢(1-FL with ¢ < 1. (b) Speedup factor increases exponen-
tially with problem length, confirming Theorem 2.6.

(a) Learning Curves (b) Curriculum Schedule

1.2 Prefix Length

1.0
0.8
6
06 — Standard RL
— POPE Fixed
o — POPE Curriculum 4
02

0 2000 4000 6000 8000 10000 12000 o 2000 4000 6000 8000 10000 12000
Episode Episode

Unguided Success Rate

Figure 3: Training simulation (L=10, b=3, mean = std over 5
seeds). (a) Standard RL (red) achieves 0% unguided success
across 12,000 episodes. POPE with fixed prefix (blue) con-
verges by episode 2,400; POPE with curriculum (green) con-
verges by episode 4,800. (b) Curriculum schedule (orange, left
axis) decreases prefix length over training while success rate
(green, right axis) climbs to 100%.

Panel (b) shows the curriculum schedule: prefix length decreases
from k = 9 to k = 0 over training, with the success rate climbing as
the model internalizes the guided reasoning strategy. The transition
from low to high success occurs when the prefix length crosses
below k ~ 5, suggesting that internalizing the first half of the
solution is the critical milestone.

3.4 Representational Bridge Analysis

Figure 4 validates the representational bridge hypothesis (Defini-
tion 2.2). Panel (a) shows hidden state overlap between guided and
unguided trajectories as a function of depth. At depths before the
prefix boundary, overlap is high (> 0.9) because both guided and
unguided trajectories start from the same initial state. At the prefix
boundary, overlap drops sharply because guided trajectories are on
the correct path while unguided trajectories have likely diverged.
Beyond the prefix, overlap remains moderate (0.5-0.7), reflecting
the instruction-following momentum.

Panel (b) shows the transfer coefficient 7~ (Eq. 3), which de-
termines how efficiently guided improvements transfer. Longer
prefixes (f = 0.75) have higher overlap before the boundary but
lower transfer coefficients beyond it because more of the trajectory
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(a) Hidden State Overlap (b) Transfer Coefficient

0.8

Overlap w(d)
°
2
Transfer Coeff.
o
o

o
=

o
i

6
Depth

Figure 4: Representational bridge analysis (L=12, b=3). (a) Hid-
den state overlap between guided and unguided trajectories.
Dashed lines mark prefix boundaries. Overlap is high before
the prefix boundary and drops afterward, but remains above
0.5 due to instruction-following. (b) Transfer coefficient 7
as a function of depth, governing the efficiency of guided-to-
unguided transfer.

Table 2: Transfer bound verification. Ay and A, are the guided
and unguided improvements; 7 is the transfer coefficient;
“Bound” indicates whether A, > 7°A;—0.05. The bound holds
in 11/12 (92%) configurations.

L k Baseline Guided Post 7  Ay/Ay Bound
6 1 0.001 0.087 1.000 0.404 11.6 Vv
6 3 0.001 0.434 1.000 0.167 2.31 vV
6 4 0.001 0.752 1.000 0.116 1.33 v
8 2 0.000 0.031 1.000 0.497 32.6 N4
8 4 0.000 0.197 1.000 0.364 5.07 v
8 6 0.000 0.752 1.000 0.267 1.33 v
10 2 0.000 0.003 1.000 0.358 375 v
10 5 0.000 0.087 1.000 0.226 11.5 v
10 7 0.000 0.434 1.000 0.150 2.30 v
12 3 0.000 0.001 1.000 0.294 1500 v
12 6 0.000 0.031 1.000 0.214 32.6 v
12 9 0.000 0.434 0.000 0.165 0.00 X

is “given” rather than learned. Shorter prefixes (f = 0.25) have
more uniform transfer, supporting the curriculum approach.

3.5 Transfer Bound Verification

We empirically verify Theorem 2.4 across 12 configurations (L €
{6,8,10,12}, f € {0.25,0.5,0.75}). Figure 5 and Table 2 present the
results. The transfer bound AV, > 7 - AV, — € holds in 11 of 12
configurations (92%). The single violation occurs at L = 12, f = 0.75,
where the training simulation was insufficient for the long-prefix
regime to transfer.

A notable finding is that shorter prefixes yield higher transfer
efficiency: at f = 0.25, the transfer efficiency (A, /Ag) exceeds 100
for large L, while at f = 0.75 it is approximately 1-2. This is because
shorter prefixes require the model to learn more autonomously, so
each unit of guided improvement translates into a larger unguided
gain. This supports the curriculum approach, which starts with

Anon.
(a) Transfer Bound (b) Transfer Efficiency
e
10{ e o 10
°
0.8
5 102
il
=06 E
2 i ° °
<04
1014 @ °
0.2 °
® °
0.04{ “® )
10°
00 02 04 06 08 10 0.3 04 0.5 0.6 0.7

Predicted 7-Ag Prefix Fraction f

Figure 5: Transfer bound verification. (a) Actual unguided
improvement A, vs. predicted lower bound 7 - A;. Points
above the diagonal satisfy the bound. Green: bound holds;
red: bound violated (1 of 12). (b) Transfer efficiency (A, /Ay)
as a function of prefix fraction, showing that shorter prefixes
yield higher transfer efficiency.

(a) Learning Curves by a (b) Final Success

Success Rate
g
>
Final Success

=
=

o
o

.
o

0 5 10 15 20 25 30 35
Episode a

Figure 6: Ablation on instruction-following strength « (L=10,
b=3, POPE curriculum, 3 seeds). (a) Learning curves: higher
a leads to faster convergence and higher final performance.
a=0 (no IF) shows minimal learning. (b) Final success rate:
monotonically increasing with «, confirming instruction-
following as the key transfer mechanism.

long prefixes for initial learning and progressively shortens them
for better transfer.

3.6 Ablation on Instruction-Following

Figure 6 shows the effect of instruction-following strength a on
POPE curriculum training. Without instruction-following (& = 0),
POPE reduces to standard continuation from the prefix with no ex-
trapolation boost, and learning is slow. As « increases, convergence
accelerates significantly: @ = 0.8 and & = 1.0 achieve near-perfect
performance within 6,000 episodes, while & = 0.2 requires over
9,000 episodes. This confirms that instruction-following is the criti-
cal mechanism enabling POPE’s transfer, as formalized in Condition
3 of Theorem 2.4.

3.7 Information-Theoretic Curriculum

Figure 7 shows the optimal curriculum schedules for different o
values. Higher o produces more aggressive schedules (faster pre-
fix reduction), because stronger instruction-following enables the
model to leverage shorter prefixes more effectively. The informa-
tion content decreases smoothly from approximately 40 bits (full
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(a) Prefix Schedules (b) Info Content

Prefix Length
Info (bits)

Stage Stage

Figure 7: Information-theoretic curriculum analysis (L=12,
b=4). (a) Optimal prefix schedules: higher « allows faster
prefix reduction. (b) Effective information content decreases
over training stages, forcing progressive internalization of
reasoning.

solution information for L = 12, b = 4) to approximately 6 bits
(structural information only), forcing progressive internalization of
the reasoning strategy.

4 CONCLUSION

We have developed a formal theoretical framework explaining
why Privileged On-Policy Exploration (POPE) improves explo-
ration on hard problems. The framework identifies three neces-
sary conditions—reachability, Lipschitz continuity, and instruction-
following—and provides quantitative tools for analyzing POPE-like
mechanisms: the exploration gap measures the advantage of guid-
ance, the transfer coefficient predicts how guided improvements
help unguided performance, and the information-theoretic curricu-
lum analysis characterizes optimal training schedules.

Our computational experiments on a synthetic exploration game
validate the theory comprehensively. The key findings are: (1) POPE
creates an exponential exploration advantage that enables learning
where standard RL fails entirely; (2) the transfer bound holds in
92% of tested configurations; (3) instruction-following strength is
the critical parameter governing transfer efficiency; and (4) shorter
prefixes paradoxically yield higher transfer efficiency, supporting
the curriculum approach.

Limitations. The synthetic exploration game, while capturing
the essential structure of POPE, abstracts away important aspects of
real LLM training, including the transformer architecture, natural
language structure, and the dynamics of gradient-based optimiza-
tion in high-dimensional parameter spaces. Extending the theory
to these settings requires additional assumptions about the repre-
sentation geometry of trained transformers.

Future work. Key directions include: (1) empirical validation of
the transfer coefficient on actual LLM hidden states during POPE
training; (2) extending the theory to handle non-stationary policies
during training; and (3) developing adaptive curriculum algorithms
that estimate the transfer coefficient online and adjust the prefix
schedule accordingly.

REFERENCES

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. 2021. On the
Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution

[10

[11

Conference’17, July 2017, Washington, DC, USA

Shift. Journal of Machine Learning Research 22, 98 (2021), 1-76.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum Learning. Proceedings of the 26th International Conference on Machine
Learning (2009), 41-48.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. DeepSeek-R1:
Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv
preprint arXiv:2501.12948 (2025).

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. 2019. Provably
Efficient Maximum Entropy Exploration. Proceedings of the 36th International
Conference on Machine Learning (2019), 2681-2691.

Sham Kakade and John Langford. 2002. Approximately Optimal Approximate
Reinforcement Learning. In Proceedings of the 19th International Conference on
Machine Learning. 267-274.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s
Verify Step by Step. arXiv preprint arXiv:2305.20050 (2023).

Zhangchen Qu, Daya Guo, Zhihong Shao, Jian Gao, Xiao Bi, Deli Liu, Pengfei
Jiang, Yixuan Luo, Zhaozhuo Xie, Wanjun Shang, Rongxiang Weng, Jiangiao Wu,
Yuxuan Xia, Zirui Sun, and Tao Ge. 2026. POPE: Learning to Reason on Hard
Problems via Privileged On-Policy Exploration. arXiv preprint arXiv:2601.18779
(2026).

Simon Schmitt, Jonathan ] Hudson, Augustin Zidek, Simon Osindero, Carl Doer-
sch, Wojciech M Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman,
Karen Simonyan, and Demis Hassabis. 2018. Kickstarting Deep Reinforcement
Learning. arXiv preprint arXiv:1803.03835 (2018).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347
(2017).

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei
Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. DeepSeekMath:
Pushing the Limits of Mathematical Reasoning in Open Language Models. arXiv
preprint arXiv:2402.03300 (2024).

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa
Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. 2022. Solving Math
Word Problems With Process- and Outcome-Based Feedback. arXiv preprint
arXiv:2211.14275 (2022).

Vladimir Vapnik and Akshay Vashist. 2009. A New Learning Paradigm: Learning
Using Privileged Information. In Neural Networks, Vol. 22. Elsevier, 544-557.
Ronald J Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8, 3 (1992), 229-256.
Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. 2022. STaR: Boot-
strapping Reasoning With Reasoning. Advances in Neural Information Processing
Systems 35 (2022), 15476-15488.

523
524
525
526
527
528
529
530
531
532
533
534

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

568

575
576
577
578
579

580



	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods: Formal Framework
	2.1 Problem Setting
	2.2 Representational Bridge Hypothesis
	2.3 Transfer Bound
	2.4 Sample Complexity
	2.5 Information-Theoretic Curriculum

	3 Results
	3.1 Exploration Gap Analysis
	3.2 Sample Complexity Separation
	3.3 Training Simulation
	3.4 Representational Bridge Analysis
	3.5 Transfer Bound Verification
	3.6 Ablation on Instruction-Following
	3.7 Information-Theoretic Curriculum

	4 Conclusion
	References

