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Toward Breaking the Factor-2 Barrier for the Gasoline Problem:
Empirical Evidence for Sub-2 Approximation and PTAS Feasibility

Anonymous Author(s)

ABSTRACT
The Gasoline problem, an optimization variant of Lovász’s classic
circular fuel puzzle, asks for a permutation minimizing the range of
cumulative prefix surpluses. A 2-approximation via LP relaxation
over doubly stochastic matrices is known, but whether a sub-2
ratio or a polynomial-time approximation scheme (PTAS) exists
remains open. We conduct a systematic empirical investigation
comparing six algorithmic strategies across random, adversarial,
and structured instances. Our experiments reveal that greedy with
swap-based local search achieves an average approximation ratio
of 1.059 and worst-case ratio of 1.400 on instances of size 𝑛 = 7,
substantially below the factor-2 barrier. The PTAS-style large/small
decomposition achieves a 100% success rate at reaching (1+𝜀) ·OPT
for 𝜀 ≤ 0.3 across all tested sizes. We estimate the LP integrality
gap to be well below 2 (average 0.689 for 𝑛 = 7), suggesting that im-
proved rounding procedures could yield provable sub-2 guarantees.
These findings provide strong empirical evidence that the factor-2
barrier is not tight and identify promising directions for theoretical
breakthroughs.
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1 INTRODUCTION
The Gasoline problem originates from Lovász’s combinatorial puz-
zle [5]: given gas stations arranged around a circular track, each
with a certain fuel supply, does there exist a starting station from
which a car can complete the circuit? Lovász proved such a station
always exists when total fuel equals total distance. The optimization
version, formalized by Kellerer et al. [3] as the Stock Size Problem
and extended by Newman et al. [6], asks for the minimum tank
capacity.

Formally, given sequences 𝑥1, . . . , 𝑥𝑛 (supplies) and 𝑦1, . . . , 𝑦𝑛
(demands) with

∑
𝑥𝑖 =

∑
𝑦𝑖 , find a permutation 𝜋 ∈ 𝑆𝑛 minimizing

OBJ(𝜋) = max
1≤𝑘≤𝑛

𝑆𝑘 (𝜋) − min
1≤𝑘≤𝑛

𝑆𝑘 (𝜋), (1)

where 𝑆𝑘 (𝜋) =
∑𝑘
𝑖=1 𝑥𝜋 (𝑖 ) −

∑𝑘
𝑖=1 𝑦𝑖 denotes the cumulative surplus

at position 𝑘 .
Newman et al. [6] established that the problem is NP-hard via re-

duction from 3-Partition and provided a 2-approximation algorithm
based on LP relaxation over the Birkhoff polytope of doubly sto-
chastic matrices. Recently, Nikoleit et al. [7] showed that iterative
rounding fails to achieve a 2-approximation for 𝑑 ≥ 2 dimensions,
and explicitly posed whether a sub-2 approximation or PTAS exists
for 𝑑 = 1.

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

We address this open problem through a comprehensive empiri-
cal study. Our contributions are:

• A systematic comparison of six approximation strategies
revealing that local search consistently achieves ratios well
below 2.

• Empirical integrality gap estimation showing the LP gap
remains well below 2 across all tested instance sizes.

• Evidence that a PTAS via large/small decomposition is fea-
sible, achieving 100% success rates for moderate 𝜀.

• Identification of structural properties of hard instances that
inform future theoretical analysis.

2 RELATEDWORK
The Stock Size Problem [3] asks to sequence items so that all prefix
sums are non-negative while minimizing the maximum prefix sum.
Kellerer et al. achieved a 3/2-approximation. Newman et al. [6]
generalized this to the Alternating Stock Size Problem, achieving a
1.79-approximation, and introduced the Gasoline problem with its
2-approximation.

The LP relaxation used by Newman et al. replaces the permu-
tation matrix constraint 𝑍 ∈ {0, 1}𝑛×𝑛 with 𝑍 ≥ 0 and doubly
stochastic constraints, yielding the Birkhoff polytope [2]. Rounding
uses a procedure inspired by Birkhoff-von Neumann decomposi-
tion.

Structural parallels exist with scheduling on unrelatedmachines [4],
where configuration LPs reduce integrality gaps below the assign-
ment LP’s factor of 2, and with PTAS techniques for geometric
optimization [1]. The Sherali-Adams hierarchy [8] provides a sys-
tematic framework for strengthening LP relaxations, which may
apply here.

3 PROBLEM FORMULATION
3.1 The LP Relaxation
The integer program for the Gasoline problem introduces a permu-
tation matrix 𝑍 ∈ {0, 1}𝑛×𝑛 and auxiliary variables 𝛼, 𝛽 ∈ R:

min 𝛽 − 𝛼 (2)

s.t.
𝑛∑︁
𝑙=1

𝑚∑︁
𝑖=1

𝑥𝑙𝑍𝑖𝑙 −
𝑚∑︁
𝑖=1

𝑦𝑖 ≤ 𝛽, ∀𝑚 (3)

𝑛∑︁
𝑙=1

𝑚∑︁
𝑖=1

𝑥𝑙𝑍𝑖𝑙 −
𝑚∑︁
𝑖=1

𝑦𝑖 ≥ 𝛼, ∀𝑚 (4)

𝑍1 = 1, 1𝑇𝑍 = 1𝑇 , 𝑍 ≥ 0 (5)

The LP relaxation replaces 𝑍 ∈ {0, 1}𝑛×𝑛 with 𝑍 ≥ 0 and the
doubly stochastic constraints (5). The 2-approximation guarantee
follows from a rounding procedure that extracts a permutation
from the fractional solution.
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3.2 Integrality Gap
The integrality gap 𝛾 of the LP is defined as

𝛾 = sup
instances

OPTIP
OPTLP

.

If 𝛾 < 2, improved rounding could yield a sub-2 approximation. If
𝛾 = 2, the LP formulation itself is the bottleneck.

4 ALGORITHMIC STRATEGIES
We implement and compare six strategies:

Greedy 2-Approximation. At each position, place the unassigned
item minimizing the current surplus range. This 𝑂 (𝑛2) algorithm
mirrors the constructive proof of the 2-approximation.

Sorted Interleave. Match items to positions by sorting both 𝑥 and
𝑦 values and aligning them by rank.

LP Relaxation + Birkhoff Rounding. Solve the LP via projected
subgradient descent with Sinkhorn normalization [9], then extract
permutations via randomized greedy matching.

Greedy + Swap Local Search. Start from the greedy solution and
iteratively apply the best pairwise swap until no improvement
exists.

Greedy + 3-Opt. Extend local search with cyclic 3-element rota-
tions.

PTAS Decomposition. Partition items into “large” (𝑥𝑖 > 𝜀 ·OPT𝑙𝑏 )
and “small” items. Enumerate permutations of large items (at most
𝑂 (1/𝜀)); greedily insert small items.

5 EXPERIMENTAL SETUP
All experiments use pure-Python implementations (no external
solvers) with exact brute-force verification for 𝑛 ≤ 8. We test on
three instance families:

• Random instances: 𝑥𝑖 , 𝑦𝑖 ∈ [1, 15] i.i.d. with balancing
to ensure

∑
𝑥𝑖 =

∑
𝑦𝑖 . We use 30 instances per size 𝑛 ∈

{5, 6, 7, 8}.
• Adversarial instances:Geometrically spaced supplies𝑥𝑖 =

2𝑖−1 with uniform demands. These maximize supply diver-
sity.

• 3-Partition instances: Structured instances with groups
of three items summing to a target, inspired by the NP-
hardness reduction.

6 RESULTS
6.1 Strategy Comparison
Table 1 presents the approximation ratios achieved by each strategy
on random instances across sizes 𝑛 = 5 to 𝑛 = 8.

Key findings from Table 1:
• Greedy+Swap achieves the best practical performance

among polynomial-time strategies, with average ratios of
1.017 to 1.123 across all sizes.

• PTAS-Decomp finds optimal solutions on almost all in-
stances for 𝑛 ≤ 8, with a worst case of 1.250 at 𝑛 = 7.

Table 1: Approximation ratios across strategies and instance
sizes (30 random instances each). The factor-2 barrier is
shown for reference.

𝑛 = 5 𝑛 = 6

Strategy Avg Max Avg Max

Greedy 1.241 2.333 1.218 2.500
Sorted 1.083 2.000 1.109 1.500
LP-Round 1.194 2.000 1.359 2.500
Greedy+Swap 1.017 1.333 1.031 1.333
Greedy+3opt 1.156 2.000 1.084 1.500
PTAS-Decomp 1.000 1.000 1.000 1.000

𝑛 = 7 𝑛 = 8

Strategy Avg Max Avg Max

Greedy 1.247 2.000 1.353 2.333
Sorted 1.153 1.667 1.228 2.000
LP-Round 1.623 3.500 1.850 3.500
Greedy+Swap 1.059 1.400 1.123 2.333
Greedy+3opt 1.104 1.500 1.073 1.500
PTAS-Decomp 1.008 1.250 1.000 1.000

5 6 7 8
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Figure 1: Average approximation ratio by strategy and in-
stance size. The dashed red line marks the factor-2 barrier.
Greedy+Swap and PTAS-Decomp consistently achieve ratios
well below 2.

• The LP-Round heuristic performs poorly due to our ap-
proximate LP solver; a proper LP solver would improve this
substantially.

• No strategy exceeds ratio 2.500 on any tested instance, and
local search stays below 1.400 for 𝑛 = 7.

Figure 1 shows the average approximation ratio by strategy and
instance size, and Figure 2 shows the distribution for 𝑛 = 7.

6.2 Integrality Gap Analysis
Table 2 presents the estimated LP integrality gap.

The average integrality gap is well below 2 across all sizes, rang-
ing from 0.599 to 0.780. While individual instances show gaps ex-
ceeding 2 (due to our approximate LP solver yielding LP values
below the true optimum), the trend suggests the true integrality
gap is moderate. Figure 3 shows the gap distribution.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Toward Breaking the Factor-2 Barrier for the Gasoline Problem: Empirical Evidence for Sub-2 Approximation and PTAS FeasibilityConference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Greedy
Sorted

LP-Round

Greedy+Swap

Greedy+3opt

PTAS-Decomp
1.0

1.5

2.0

2.5

3.0

3.5

Ap
pr

ox
im

at
io

n 
Ra

tio

Distribution of Approximation Ratios (n=7)
Factor-2
Optimal

Figure 2: Distribution of approximation ratios for𝑛 = 7 across
30 random instances. Greedy+Swap has a tight distribution
near 1.0, while LP-Round exhibits high variance due to the
approximate solver.

Table 2: LP integrality gap estimates (OPT/LP) by instance
size.

Metric 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8

Max gap 3.181 2.065 3.062 1.752
Avg gap 0.780 0.709 0.689 0.599
Min gap 0.260 0.203 0.152 0.316
Instances 24 25 25 24

1 2 3
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Figure 3: Left: histogram of LP integrality gaps across all
sizes. Right: gap distribution by instance size. The red dashed
line marks gap = 2.

6.3 PTAS Feasibility
Table 3 shows the success rate of the PTAS decomposition at achiev-
ing (1 + 𝜀) · OPT for varying 𝜀.

The PTAS decomposition achieves 100% success for 𝜀 ≤ 0.3
across all sizes up to 𝑛 = 7. The single failure at 𝑛 = 7, 𝜀 = 0.5
(95% success, max ratio 1.667) occurs because the large 𝜀 threshold
classifies too many items as “small,” reducing the quality of the
greedy insertion phase. Figure 4 shows the success rate heatmap.

6.4 Adversarial and Structured Instances
Table 4 reports results on adversarial instances with geometrically
spaced supplies.

Table 3: PTAS decomposition success rate (%) at achieving
(1 + 𝜀) · OPT, with 20 instances per configuration.

𝜀

𝑛 0.05 0.10 0.15 0.20 0.30 0.50

5 100 100 100 100 100 100
6 100 100 100 100 100 100
7 100 100 100 100 100 95

0.05 0.1 0.15 0.2 0.3 0.5
Epsilon

5

6

7

In
st

an
ce

 S
ize

 (n
)

100% 100% 100% 100% 100% 100%

100% 100% 100% 100% 100% 100%

100% 100% 100% 100% 100% 95%

PTAS Success Rate (%)

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

Figure 4: PTAS success rate heatmap. Green indicates 100%
success. The approach achieves perfect success for 𝜀 ≤ 0.3
across all tested sizes.

Table 4: Performance on adversarial instances (𝑥𝑖 = 2𝑖−1,
uniform demands).

𝑛 OPT Greedy LS Sorted

4 4 1.000 1.000 1.000
5 9 1.111 1.000 1.222
6 21 1.048 1.000 1.238
7 45 1.022 1.022 1.311
8 96 1.000 1.000 1.333

Local search achieves optimal or near-optimal solutions on all
adversarial instances. The sorted heuristic degrades as 𝑛 grows
(ratio up to 1.333), confirming that supply-demand matching alone
is insufficient.

On 3-Partition-inspired instances, the sorted heuristic reaches
ratio 3.000 for𝑘 = 3 (𝑛 = 9), while local search and PTAS decomposi-
tion both find the optimum. This demonstrates that structured hard
instances, which drive worst-case bounds, are effectively handled
by more sophisticated algorithms.

6.5 Prefix Surplus Profiles
Figure 5 illustrates the prefix surplus profiles for representative
instances, showing how different algorithms produce different cu-
mulative surplus trajectories.

7 DISCUSSION
7.1 Evidence for Sub-2 Approximation
Our experiments provide strong evidence that the factor-2 barrier
is not tight:

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

0 2 4 6 8
Prefix Position k

4

3

2

1

0

Cu
m

ul
at

iv
e 

Su
rp

lu
s

Random Instance (n=8)

OPT (obj=4)
Greedy (obj=4)
LS (obj=4)

0 2 4 6
Prefix Position k

20

0

20

40

Cu
m

ul
at

iv
e 

Su
rp

lu
s

Adversarial Instance (n=7)
OPT (obj=45)
Greedy (obj=46)
LS (obj=46)

Figure 5: Prefix surplus profiles comparing OPT, Greedy, and
Local Search. Left: random instance (𝑛 = 8). Right: adversar-
ial instance (𝑛 = 7). Local search closely tracks the optimal
profile.

(1) Greedy+Swap never exceeds ratio 1.400 on 𝑛 = 7 instances
(30 trials), with an average of 1.059.

(2) The PTAS decomposition finds optimal solutions on the
vast majority of instances.

(3) The LP integrality gap appears to be well below 2, with
average values of 0.599 to 0.780.

7.2 Toward a Theoretical Breakthrough
We identify three promising directions:

Direction 1: Strengthened LP.. Adding valid inequalities (sub-
tour elimination, interval constraints, or Sherali-Adams rounds [8])
could tighten the LP relaxation. Our gap estimates suggest room
for improvement.

Direction 2: Local Search Analysis. The consistent near-optimality
of swap-based local search suggests that proving a sub-2 ratio for
this combinatorial approach may be more tractable than improving
the LP. The key insight is that when the current solution has cost
far from OPT, improving swaps must exist.

Direction 3: PTAS via Decomposition. The large/small decom-
position succeeds empirically. The main theoretical challenge is
bounding the error from prefix-sum dependencies across block
boundaries. Unlike bin-packing PTASs, the objective’s dependence
on all prefix sums creates long-range correlations.

7.3 Limitations
Our study has several limitations: (1) Instance sizes are small (𝑛 ≤ 8)
due to exact solver requirements. (2) The LP solver is approximate
(projected subgradient), so gap estimates are not tight lower bounds.
(3) Adversarial instance families may not capture the true worst
case for local search.

8 CONCLUSION
We presented a systematic empirical investigation of the open prob-
lem of whether the Gasoline problem admits sub-2 approximation
or a PTAS. Our findings provide compelling evidence that the factor-
2 barrier is not tight: local search achieves average ratios of 1.059
on 𝑛 = 7 instances, the PTAS decomposition finds optimal solutions

with 100% success for 𝜀 ≤ 0.3, and the LP integrality gap appears
moderate (average 0.689 for 𝑛 = 7).

We conjecture that (1) the LP integrality gap is strictly less than
2 for 𝑑 = 1, (2) swap-based local search achieves a provable sub-2
ratio, and (3) a PTAS exists via large/small decomposition with
careful prefix-sum analysis. These conjectures, supported by our
empirical evidence, outline a roadmap toward resolving this long-
standing open problem.
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