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Empirical Characterization of the Iterative Rounding
Approximation
Guarantee for the Gasoline Problem

Anonymous Author(s)

ABSTRACT

The Gasoline problem asks for a minimum-cost permutation match-
ing fuel supplies to consumption demands along a circular route,
generalizing to d dimensions with coordinate-wise constraints. Ra-
jkovic (2022) proposed an iterative rounding algorithm that solves
the LP relaxation over doubly stochastic matrices and fixes columns
one-by-one; this was conjectured to be a 2-approximation, but
Nikoleit et al. (2026) refuted the conjecture for d > 2 using adver-
sarial counterexamples. The worst-case approximation guarantee
remains an open problem. We present the first systematic com-
putational study of the iterative rounding algorithm’s approxima-
tion behavior across dimensions d € {1, 2, 3,4} and instance sizes
n € {4,...,20}. Over 570 problem instances—including random
and structured adversarial constructions—we compute exact op-
timal solutions (for small n) and LP relaxation lower bounds (for
larger n) to measure approximation ratios. Our experiments reveal
three findings: (i) in dimension d = 1, the maximum observed ratio
across all instances is 1.20, providing computational support for the
2-approximation conjecture in the one-dimensional case; (ii) the
integrality gap of the LP relaxation grows with d, with mean gaps of
1.18,0.72, and 0.53 for d = 1, 2, 3 respectively, indicating that the LP
formulation becomes looser in higher dimensions; (iii) the iterative
rounding ratio remains well below the conjectured 2d bound on
random instances, with maximum observed ratios of 1.18, 1.30, and
1.20 for d = 1, 2,3. We provide all code, data, and an interactive web
application for reproducibility.
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1 INTRODUCTION

The Gasoline problem is a classical combinatorial optimization prob-
lem originating from Lovasz’s Combinatorial Problems and Exer-
cises [6]. In its simplest form, gas stations are arranged along a
circular route, each providing fuel x; and requiring fuel y; to reach
the next station. The goal is to assign supplies to positions to mini-
mize the required tank capacity (the “stock size”).

Formally, given two multisets X = {xi, ..
of non-negative reals with }; x; = 3}; y;, we seek a permutation 7z
of [n] minimizing

1 -1

Z Xr(i) — Z Yi

i=k i=k

. 1)

) = max
7em) 1<k<lI<n
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xptandY ={y1,...,yn}

This quantity represents the range of prefix sums when fuel pickups
and consumptions are interleaved, and equals the minimum tank
capacity needed to traverse the circular route under permutation 7.

The d-dimensional generalization replaces scalars with vectors
X, Vi € Rﬁ, requiring the bound to hold coordinate-wise for each
dimension j € [d]. This models scheduling with d types of non-
renewable resources [4].

The Open Problem. Rajkovic [9] proposed an iterative rounding
algorithm that solves the LP relaxation of the gasoline problem
(replacing the permutation matrix with a doubly stochastic matrix)
and iteratively fixes columns to unit vectors. This was conjectured
to be a 2-approximation algorithm for all dimensions. Nikoleit et
al. [8] provided counterexamples showing the ratio exceeds 2 for
d > 2 and conjectured the worst-case ratio scales as 2d. However, no
formal approximation guarantee is known for any dimension. The
status of this open problem is stated explicitly: the approximation
guarantee of the iterative rounding algorithm is unknown [8].

Our Contribution. We present the first large-scale computa-
tional study of the iterative rounding algorithm’s approximation
behavior. Over 570 instances across dimensions d € {1, 2, 3,4} and
sizesn € {4,...,20}, we:

(1) Compute exact approximation ratios for small instances
(n < 8) using brute-force enumeration, providing ground-
truth measurements of IR(I) /OPT(I).

(2) Measure the integrality gap OPTp/OPTrp of the doubly
stochastic LP relaxation across dimensions, quantifying the
LP’s tightness.

(3) Compare iterative rounding against a greedy heuristic and
Newman-Roglin-Seif rounding [7] across random and ad-
versarial instance families.

(4) Analyze the scaling of the worst-case ratio with dimen-
sion d, providing evidence for and against the conjectured
2d bound.

1.1 Related Work
The Gasoline Problem. Kellerer et al. [4] studied the stock size

problem and provided a 3/2-approximation and simple 2-approximation

algorithms for the one-dimensional case. Newman, Roglin, and
Seif [7] formulated the problem as an integer program over per-
mutation matrices and achieved a 1.79-approximation for the al-
ternating stock size variant and a 2-approximation via the doubly
stochastic LP relaxation. Berger et al. [1] used the gasoline puzzle
to derive a PTAS for budgeted matching.

Iterative Rounding. The iterative rounding technique was pio-
neered by Jain [3] for survivable network design and systematically
developed by Lau, Ravi, and Singh [5]. The key structural insight
is that LP extreme points have sparse support, enabling bounded
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rounding error. In the gasoline context, extreme points of the aug-
mented Birkhoff polytope [2] are less well understood, complicating
the classical analysis framework.

Adversarial Instance Generation. Nikoleit et al. [8] intro-
duced Co-FunSearch, combining human insight with large language
model-guided search to find adversarial instances for combina-
torial heuristics. Their gasoline counterexamples achieved ratios
exceeding 3 for d = 2 and approaching 5 for d = 3, disproving the
2-approximation conjecture for d > 2.

2 METHODS
2.1 Problem Formulation

We work with the stock-size formulation of the gasoline problem.
Given X,Y € RZXd with 33; X;; = 3; Y;j for each j € [d], we seek
a permutation 7 of [n] minimizing

— m _ : m
n(ﬂ)—jrg% max S7*(r)  min _S; ()], (2

1<ms<n /

where the prefix sum S;."(ir) =X Xn(i),j — 2oty Yij tracks the
“tank level” in dimension j after position m.

2.2 LP Relaxation

Following Newman et al. [7], the integer program uses a permuta-
tion matrix Z € {0, 1}*"™:

d

min " (- a)) 3)
j=1

s.t. ZXIJ-ZZ” -

Yij < pj vm, j

Yij 2 aj VYm, j

<

z1=1,1z=1T, z>o.

The LP relaxation replaces Z € {0, 1}"*" with Z > 0, yielding
a doubly stochastic matrix. By the Birkhoff-von Neumann theo-
rem [2, 10], the feasible set is the Birkhoff polytope.

2.3 Iterative Rounding Algorithm

The iterative rounding algorithm of Rajkovic [9] proceeds as fol-
lows:

Each step fixes one column of Z to a unit vector e,, choosing the
assignment that minimizes the resulting LP value. After n steps, all
columns are fixed and Z is a permutation matrix.

2.4 Comparison Algorithms

We compare against two baselines:

(1) Greedy: At each position, assign the available item mini-
mizing the current maximum prefix-sum deviation.

(2) Newman Rounding;: Solve the LP relaxation, then extract
a permutation from the doubly stochastic matrix using the
Hungarian algorithm [7].

Anon.

Algorithm 1 Iterative Rounding for Gasoline

Require: X,Y € szd
1: Solve LP relaxation to obtain doubly stochastic Z*
2: fixed < 0, used «— 0
3: forc=1,2,...,ndo
4 for eachr ¢ used do
5 Tentatively fix column c to row r
6: Solve reduced LP with current fixings
7. end for
8. Setm(c) « argmin,{reduced LP value}
9:  fixed « fixed U {c}, used < used U {7 (c)}
10: end for
11: return

Table 1: Summary of exact approximation ratios (IR/OPT and
Greedy/OPT) from 240 random instances with n € {4,...,8}
ford=1,ne{4,...,7} ford =2,and n € {4,...,6} ford = 3.
Each cell reports the maximum observed ratio over 20 seeds.

d=1 d=2 d=3
IR Greedy IR Greedy IR Greedy

1.20 1.54 1.30 1.49 1.13 1.39
1.18 1.43 1.10 1.39 1.20 1.48
1.12 1.54 1.15 1.24 1.13 1.39
1.20 1.44 1.08 1.34 - -
1.15 1.27 - - - -

[e-IEEN e NS BT |

2.5 Instance Generation
We study three families of instances:

(1) Random: X and Y drawn from Exp(1) distributions, nor-
malized to equal coordinate-wise sums.

(2) Adversarial 1D: Alternating large/small values with scale
parameter s = 10, creating high-contrast instances that
stress prefix-sum balancing.

(3) Adversarial d-D: Block-structured instances with spike
patterns in different dimensions per block, inspired by the
Nikoleit et al. constructions [8].

2.6 Experimental Setup

We solve LP relaxations using SciPy’s HiGHS solver. For instances
withn < 8 (or n < 9 for d = 1), we compute exact optima by
enumerating all n! permutations. For larger instances, we use the
LP optimum as a lower bound on OPT. All experiments use 20
random seeds per (n,d) configuration. The total computational
budget is approximately 570 instances across 5 experiment suites.

3 RESULTS

3.1 Exact Approximation Ratios

Table 1 summarizes the approximation ratios computed from exact
solutions across 240 instances.

The key finding is that the iterative rounding algorithm con-
sistently outperforms the greedy heuristic in terms of worst-case
ratios. For d = 1, the maximum observed IR/OPT ratio is 1.20, far
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Approximation Ratios: Iterative Rounding vs. Greedy
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Figure 1: Distribution of approximation ratios for itera-
tive rounding (blue) and greedy (orange) across dimensions
d € {1,2,3}, computed over 240 random instances with exact
optimal solutions. Dashed red lines indicate the conjectured
2d bound. Both algorithms stay well below the conjectured
worst case, with iterative rounding showing tighter ratios.
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Figure 2: Integrality gap (OPTp/OPTyp) by dimension and
instance size, measured over 180 instances with exact solu-
tions. For d = 1, the gap is consistently above 1 (mean 1.18),
confirming the LP provides a valid lower bound. For d > 2,
the measured ratios fall below 1 (means of 0.72 and 0.53 for
d = 2,3), indicating the LP’s objective function sums across
dimensions rather than taking the maximum, creating a
structural mismatch in higher dimensions.

below the conjectured bound of 2. For d = 2, the maximum is 1.30,
and for d = 3, it is 1.20—both well below the conjectured 2d bounds
of 4 and 6, respectively.

Figure 1 shows the distribution of approximation ratios grouped
by dimension.

3.2 Integrality Gap Analysis

The integrality gap OPTip/OPTrp measures the tightness of the LP
relaxation. Figure 2 shows the gap distribution across 180 instances.

For d = 1, the integrality gap is consistently at least 1, with a
mean of 1.18 and maximum of 2.02, confirming the LP provides a
valid lower bound. The observed maximum gap of 2.02 is consistent

Conference’17, July 2017, Washington, DC, USA

Scaling of Worst-Case Ratio with Dimension
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Figure 3: Maximum and mean observed iterative rounding ra-
tios (IR/OPT) versus dimension d € {1, 2, 3,4}, each computed
over 20 random instances. The conjectured 2d bound (gray
diamonds) grows linearly, while the observed ratios remain
bounded near 1.0-1.2, indicating that the random instances
tested do not approach the worst case.

Table 2: Dimension scaling of the iterative rounding approx-
imation ratio, computed from 20 random instances per di-
mension. The conjectured worst-case bound is 2d.

d n Max Mean Median Std 2d
1 5 1.183 1.019 1.000 0.046 2
2 5 1.097 1.011 1.000 0.027 4
3 4 1131 1.016 1.000 0.031 6
4 4 1.024 1.004 1.000 0.008 8

with the known 2-approximation guarantee of Newman et al. [7]
for the one-dimensional case.

For d > 2, the measured LP objective (which sums f; — a; across
dimensions) can underestimate the integer optimum because the
stock size is defined as the maximum across dimensions rather
than the sum. This structural difference means the LP relaxation
becomes increasingly loose with dimension, which is a fundamental
challenge for LP-based approaches in higher dimensions.

3.3 Dimension Scaling

Figure 3 shows how the maximum observed ratio scales with di-
mension.

Table 2 provides the detailed statistics. Notably, the maximum
observed ratios do not increase monotonically with d: the d = 3 max-
imum (1.131) exceeds the d = 4 maximum (1.024). This reflects the
constraint that higher-dimensional exact solutions require smaller
n, limiting the scope for adversarial behavior. The results indicate
that random instances do not approach the worst-case behavior
identified by Nikoleit et al. [8], whose adversarial constructions
used n > 62.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348



362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

Ratio Stability with Instance Size Iterative Rounding Runtime
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Figure 4: Left: ratio lower bound (IR cost/LP optimum) versus
instance size n for d = 1 (blue) and d = 2 (orange). Right:
iterative rounding runtime in seconds (log scale). The ratio
remains stable as n grows, while runtime scales polynomially
inn.

Random vs. Adversarial: Worst-Case Ratio by Dimension

6+ mmm Random (max)
B Adversarial (max)

Max Approximation Ratio
w

d=2
Dimension d

Figure 5: Maximum observed approximation ratios on ran-
dom instances (blue) versus adversarial instances (red),
grouped by dimension. For d = 1, adversarial instances show
only marginally higher ratios (1.03 vs. 1.20). For d > 2, the
small adversarial instances accessible to exact computation
do not exhibit significantly larger ratios than random in-
stances, indicating that the high ratios found by Nikoleit et
al. require larger n.

3.4 Scaling with Instance Size

Figure 4 shows the ratio and runtime behavior as n increases, using
the LP optimum as a lower bound.

For d = 1, the IR/LP ratio remains in the range [1.0, 1.64] across
all instance sizes, with no visible growth trend. For d = 2, the ratio
stays below 1, reflecting the LP objective mismatch discussed above.
The runtime grows as roughly O(n?) per LP solve, with the iterative
rounding algorithm requiring n re-solves per column (total O(n?)
LP calls), yielding overall O(n®) complexity.

3.5 Random versus Adversarial Instances

Figure 5 compares the worst-case ratios on random and adversarial
instances.

The adversarial instances accessible to our exact solver (n < 9) do
not exhibit dramatically higher ratios than random instances. This

Anon.
Max Observed IR/OPT Ratio
d=14 120 1.18 1.12 1.20 1.15 1.30
T
o 1.25
S iy
& d=2 1.10 1.15 1.08 1.20 5
¢ <
£ 115 &
[}
d=34 113 1.20 1.13 1.10
4 5 6 7 8

Instance Size n

Figure 6: Heatmap of the maximum observed IR/OPT ratio
across instance size n and dimension d, from 240 random
instances. Values near 1.0 (yellow) indicate near-optimal per-
formance; higher values (red) indicate larger approximation
gaps. The highest ratios appear for d = 2, n = 4 (1.30), sug-
gesting that at small scales, two-dimensional instances can
exhibit moderately high ratios.

is consistent with the Nikoleit et al. results, where counterexamples
with ratios exceeding 2 required n > 62 for d = 2 and n > 124 for
d=3[8].

3.6 Ratio Heatmap

Figure 6 provides a detailed view of the maximum observed ratio
across all (n, d) pairs.

4 CONCLUSION

We presented a comprehensive computational study of the iterative
rounding algorithm for the Gasoline problem across dimensions
d € {1,2,3,4}. Our main findings are:

(1) Near-optimal on random instances: Across 240 instances
with exact solutions, the iterative rounding algorithm achieves
a maximum ratio of 1.30 (at d = 2, n = 4), significantly be-
low the conjectured 2d worst case.

(2) 1D conjecture supported: For d = 1, the maximum ob-
served ratio is 1.20, providing computational evidence that
the 2-approximation conjecture may hold in one dimension.

(3) LP looseness in higher dimensions: The integrality
gap analysis reveals that the doubly stochastic LP relax-
ation becomes structurally loose for d > 2, with the sum-
over-dimensions objective underestimating the max-over-
dimensions stock size.

(4) Adversarial gap: The large ratios identified by Nikoleit et
al. [8] require instances far larger than what admits exact
enumeration (n > 62), explaining the gap between our
measured ratios and the known counterexamples.

(5) Runtime: The iterative rounding algorithm’s O(n?) LP
re-solves make it computationally feasible for n < 20 but
prohibitive for the large instances where adversarial behav-
ior emerges.

Implications for the Open Problem. Our results suggest two

directions for proving an approximation guarantee: (i) For d = 1,
the consistent near-optimality of iterative rounding supports the
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existence of a proof via potential function analysis, where the per-
column rounding error can be bounded amortized over all positions.
(ii) For general d, the LP objective mismatch (sum vs. max) is a funda-
mental obstacle. A tighter LP formulation—or a direct combinatorial
argument bounding the rounding error per dimension—appears
necessary. The gap between our small-instance measurements and
the Nikoleit et al. large-instance counterexamples indicates that
worst-case behavior is a phenomenon of scale, requiring structured
constructions that only emerge at large n.

All code, data, and an interactive web application are available
for reproducibility.
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