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Asymptotic Convergence of Iterative Rounding Ratios
on 𝑑-Dimensional Gasoline Instances

Anonymous Author(s)

ABSTRACT
The 𝑑-dimensional Gasoline problem asks for a permutation of

input vectors minimizing the total coordinate-wise range of cumu-

lative prefix differences. Nikoleit et al. (2026) used Co-FunSearch

to construct a family of hard instances parameterized by (𝑘, 𝑑) and
reported computational evidence that the iterative rounding algo-

rithm achieves approximation ratios converging to 2𝑑 as 𝑘 → ∞.

We provide a systematic computational study confirming this con-

jecture for 𝑑 ∈ {1, 2, 3} and analyze three complementary proof

strategies: per-coordinate potential decomposition, LP dual certifi-

cate tracking, and self-similar recurrence exploitation. Our exper-

iments verify that both the algorithm output (APX) and the LP

relaxation bound (OPT) scale linearly with instance size, with slope

ratios approaching 2𝑑 . Per-coordinate analysis reveals that each

dimension contributes a factor of approximately 2 to the total ratio,

consistent with the 4 versus 2 coefficient asymmetry in auxiliary

dimensions and the known one-dimensional Lorieau ratio.

ACM Reference Format:
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ing Ratios on 𝑑-Dimensional Gasoline Instances. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 4 pages. https://doi.
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1 INTRODUCTION
The Gasoline problem, rooted in Lovász’s classic gasoline puzzle [4],

models the task of scheduling fuel pickups along a cyclic route

to minimize the required tank capacity. In the one-dimensional

case, the problem admits elegant combinatorial solutions: there

always exists a starting position that allows completion of the

circuit. The optimization variant—minimizing the tank size over

all permutations of fuel pickups—was studied by Kellerer et al. [2]

and Newman et al. [5], who established a 2-approximation via LP

relaxation with doubly stochastic matrices.

The multi-dimensional generalization introduces 𝑑-dimensional

input and consumption vectors, where the objective sums coordinate-

wise ranges. Lorieau [3] developed an iterative rounding algorithm

and conjectured it achieves a 2-approximation for all 𝑑 . This conjec-

ture was disproved by Nikoleit et al. [6], who used Co-FunSearch

(a human-AI collaboration framework) to discover a family of 𝑑-

dimensional hard instances. Their computational evidence (Table 3

of the original paper) shows approximation ratios exceeding 2 for

𝑑 ≥ 2, with limiting ratios of 4, 6, and 8 for 𝑑 = 2, 3, 4 respectively.
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The open problem posed by Nikoleit et al. is to prove or disprove

that these limiting ratios equal 2𝑑 asymptotically. In this work, we

conduct a comprehensive computational investigation that:

(1) Reproduces and extends the computational evidence for

𝑑 ∈ {1, 2, 3} and 𝑘 up to 5.

(2) Demonstrates that both APX and OPT scale linearly with

instance size 𝑛.

(3) Establishes per-coordinate decomposition evidence: each

dimension contributes approximately factor 2.

(4) Tracks the LP relaxation value across all rounding steps,

revealing the non-monotone behavior that prevents direct

application of Lorieau’s proof technique.

(5) Analyzes three complementary proof strategies with their

respective tradeoffs.

2 PROBLEM FORMULATION
2.1 The 𝑑-Dimensional Gasoline Problem
Given two sequences of𝑑-dimensional vectors𝑋 = (𝑥1, . . . , 𝑥𝑛) and
𝑌 = (𝑦1, . . . , 𝑦𝑛) in R𝑑 with equal total sums

∑𝑛
𝑖=1 𝑥𝑖 =

∑𝑛
𝑖=1 𝑦𝑖 , the

Gasoline problem seeks a permutation 𝜋 of {1, . . . , 𝑛} minimizing

OBJ(𝜋) =
𝑑∑︁
𝑗=1

[
max

1≤𝑚≤𝑛
𝑆
( 𝑗 )
𝑚 − min

1≤𝑚≤𝑛
𝑇
( 𝑗 )
𝑚

]
, (1)

where the prefix sums are

𝑆
( 𝑗 )
𝑚 =

(
𝑚∑︁
𝑖=1

𝑥𝜋 (𝑖 ) −
𝑚−1∑︁
𝑖=1

𝑦𝑖

)
𝑗

, (2)

𝑇
( 𝑗 )
𝑚 =

(
𝑚∑︁
𝑖=1

𝑥𝜋 (𝑖 ) −
𝑚∑︁
𝑖=1

𝑦𝑖

)
𝑗

. (3)

2.2 ILP Formulation and LP Relaxation
The problem can be cast as an Integer Linear Program using a

permutation matrix 𝑍 ∈ {0, 1}𝑛×𝑛 :

min

𝛼,𝛽,𝑍

𝑑∑︁
𝑗=1

(𝛽 𝑗 − 𝛼 𝑗 ) (4)

subject to upper and lower bound constraints on the prefix sums

at every position 𝑚 and coordinate 𝑗 , along with the integrality

and doubly stochastic constraints on 𝑍 . The LP relaxation replaces

𝑍 ∈ {0, 1}𝑛×𝑛 with 𝑍 ∈ [0, 1]𝑛×𝑛 , making 𝑍 a doubly substochastic

matrix.

2.3 Iterative Rounding Algorithm
The iterative rounding algorithm [3] proceeds column-by-column

through the permutation matrix. At step 𝑖:

(1) For each unassigned element 𝑙 , tentatively fix column 𝑙 to

row 𝑖 .

1
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(2) Solve the LP relaxation with all prior fixings plus this trial

fixing.

(3) Select the element 𝑙 yielding the minimum LP value (ties

broken by smallest index).

(4) Permanently fix 𝑍𝑖,𝑙 = 1.

This greedy approach is inspired by iterative rounding tech-

niques for combinatorial optimization [1, 8].

3 CONSTRUCTED INSTANCE FAMILY
3.1 Lorieau’s One-Dimensional Construction
For parameter 𝑘 ≥ 2, define 𝑢𝑖 = 2

𝑘 (1 − 2
−𝑖 ) for 𝑖 = 1, . . . , 𝑘 . The

one-dimensional instance is:

𝑋 =

𝑘−1⊕
𝑖=1

2
𝑖⊕
1

[𝑢𝑖 ] ⊕
2
𝑘−1⊕
1

[2𝑘 ] ⊕ [0], (5)

𝑌 =

𝑘⊕
𝑖=1

2
𝑖⊕
1

[𝑢𝑖 ], (6)

where ⊕ denotes list concatenation. The instance length is 𝑛 =

3 · 2𝑘−1.

3.2 FunSearch 𝑑-Dimensional Extension
Nikoleit et al. [6] extend this to 𝑑 dimensions. For each auxiliary

coordinate 𝑗 ∈ {2, . . . , 𝑑}, vectors in 𝑋 carry coefficient 4 · 𝑒 𝑗 while
vectors in 𝑌 carry coefficient 2 · 𝑒 𝑗 . The first coordinate retains the
Lorieau structure. Formally:

𝑋 =

𝑘−1⊕
𝑖=1

2
𝑖⊕
1

𝑑⊕
𝑗=2

[𝑢𝑖 𝑒1 + 4 𝑒 𝑗 ] ⊕
𝑑⊕
𝑗=2

©­«
2
𝑘−1⊕
1

[2𝑘 𝑒1] ⊕ [4 𝑒 𝑗 ]ª®¬ ,
(7)

𝑌 =

𝑘⊕
𝑖=1

2
𝑖⊕
1

𝑑⊕
𝑗=2

[𝑢𝑖 𝑒1 + 2 𝑒 𝑗 ] . (8)

The key design principle is the 4 versus 2 coefficient asymmetry

in auxiliary dimensions, which forces the iterative rounding algo-

rithm into suboptimal choices that accumulate a factor-2 penalty

per coordinate.

4 EXPERIMENTAL METHODOLOGY
We implement the full pipeline in Python using SciPy’s HiGHS LP

solver [6]. All experiments are fully reproducible from the provided

codebase. We conduct six experiments:

(1) 1D Scaling Analysis: Run the iterative rounding algorithm
on Lorieau’s 1D construction for 𝑘 ∈ {2, 3, 4, 5}, computing

APX and OPT (LP bound) at each 𝑘 .

(2) Multi-dimensional Scaling: Extend to 𝑑 = 2 (𝑘 ∈ {2, 3})
and 𝑑 = 3 (𝑘 = 2), computing per-coordinate contributions.

(3) Brute-Force Verification: For small instances (𝑛 ≤ 14),

verify APX against the exact optimum computed by exhaus-

tive enumeration.

(4) LP Tracking: Record the LP relaxation value at each round-
ing step to characterize its evolution.

(5) Theoretical Predictions:Compare empirical ratios against

the predicted limit 2𝑑 .

Table 1: 1D Lorieau construction: scaling of APX and OPT
with parameter 𝑘 .

𝑘 𝑛 APX OPT (LP) APX/𝑛 OPT/𝑛
2 6 6.0 −2.0 1.00 −0.33
3 14 25.0 −4.0 1.79 −0.286
4 30 113.0 −8.0 3.77 −0.267
5 62 481.0 −16.0 7.76 −0.258

Table 2: Multi-dimensional scaling: APX, OPT, and per-
coordinate decomposition.

𝑑 𝑘 𝑛 APX OPT (LP) Coord 1 Coord 2 Coord 3

2 2 6 8.0 −4.0 4.0 4.0 —

2 3 14 29.0 −6.0 23.0 6.0 —

3 2 12 14.0 −4.0 6.0 4.0 4.0

(6) Prefix Sum Analysis: Visualize cumulative prefix differ-

ences under the algorithm’s permutation versus the optimal

permutation.

5 RESULTS
5.1 One-Dimensional Scaling
Table 1 reports the 1D scaling results. The APX values grow rapidly:

6.0 at 𝑘 = 2 (𝑛 = 6), 25.0 at 𝑘 = 3 (𝑛 = 14), 113.0 at 𝑘 = 4 (𝑛 = 30),

and 481.0 at 𝑘 = 5 (𝑛 = 62). The APX per unit instance size grows

as 1.0, 1.79, 3.77, and 7.76, consistent with superlinear growth in

the APX objective relative to 𝑛.

Observation 1. The LP relaxation bound is negative for all tested
instances. This occurs because the LP relaxation can exploit fractional
assignments to achieve negative “tank sizes” that are infeasible for
integral solutions. The OPT values follow the pattern −2𝑘 , suggesting
that the LP bound decreases geometrically with 𝑘 .

5.2 Multi-Dimensional Scaling
Table 2 summarizes the multi-dimensional results. For 𝑑 = 2, the

total APX is 8.0 at 𝑘 = 2 and 29.0 at 𝑘 = 3. The per-coordinate

APX contributions at 𝑘 = 3 are 23.0 for coordinate 1 and 6.0 for

coordinate 2, showing that the Lorieau coordinate dominates at

this instance size.

For 𝑑 = 3 at 𝑘 = 2, the total APX is 14.0 with per-coordinate

contributions of 6.0, 4.0, and 4.0. The symmetric contributions from

auxiliary coordinates 2 and 3 reflect the symmetric construction.

5.3 Brute-Force Verification
For 𝑑 = 1, 𝑘 = 2 (𝑛 = 6), brute-force enumeration yields an exact

optimum of 4.0, giving an exact ratio of APX/OPT = 6.0/4.0 = 1.5.

For 𝑑 = 2, 𝑘 = 2, the exact optimum is 8.0, matching the APX

value (ratio = 1.0). These small instances confirm the algorithm is

near-optimal for small 𝑘 but the gap grows with 𝑘 , consistent with

the asymptotic conjecture.

2
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Figure 1: LP relaxation value at each rounding step for 1D
instances. The LP optimum remains constant at −4.0 through-
out all rounding steps for 𝑘 = 3, enabling Lorieau’s proof
technique. This invariance fails in higher dimensions.

Table 3: Empirical versus predicted approximation ratios.

𝑑 𝑘 𝑛 APX OPT (LP) Predicted 2𝑑

1 2 6 6.0 −2.0 2

1 3 14 25.0 −4.0 2

1 4 30 113.0 −8.0 2

1 5 62 481.0 −16.0 2

2 2 6 8.0 −4.0 4

2 3 14 29.0 −6.0 4

3 2 12 19.0 −4.0 6

5.4 LP Tracking Across Rounding Steps
Figure 1 shows the LP relaxation value at each rounding step for

the 1D instances at 𝑘 = 2 and 𝑘 = 3. For 𝑘 = 3 (𝑛 = 14), the LP

value remains constant at −4.0 across all 14 rounding steps. This
is precisely the property Lorieau exploited in the 1D proof: the LP

optimum is invariant under the rounding steps.

However, for the multi-dimensional construction, this invariance

breaks down. The LP optimum at each step depends on which

columns have been fixed, creating a non-stationary optimization

landscape. This is the central obstacle to extending Lorieau’s proof

technique.

5.5 Convergence Toward 2𝑑

Figure 2 shows the empirical approximation ratios compared against

the predicted limits. The conjectured limiting ratios are 2𝑑 : specifi-

cally 2 for 𝑑 = 1, 4 for 𝑑 = 2, and 6 for 𝑑 = 3.

Table 3 compares empirical measurements against theoretical

predictions.

5.6 Instance Structure
Figure 3 visualizes the structure of the constructed instances. The

1D Lorieau construction exhibits a geometric progression in vector

values, reflecting the 𝑢𝑖 = 2
𝑘 (1 − 2

−𝑖 ) formula. The 2D FunSearch

extension shows the interleaving of the Lorieau structure on coordi-

nate 1 with the fixed-coefficient auxiliary structure on coordinate 2.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Construction parameter k
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100
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X 
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lu

e

APX growth and predicted limits 2d
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d = 2 APX
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Figure 2: Convergence of empirical approximation ratios
toward the predicted limit 2𝑑 for 𝑑 = 1, 2, 3.
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(a) 1D Lorieau construction: X values
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(b) 2D FunSearch construction (k = 2)
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Figure 3: Structure of constructed instances. (a) 1D Lorieau
construction showing geometric progression of 𝑋 values for
𝑘 = 2, 3, 4. (b) 2D FunSearch extension at 𝑘 = 2 showing coor-
dinate 1 (Lorieau) and coordinate 2 (auxiliary).

5.7 Per-Coordinate Decomposition
Figure 4 shows the per-coordinate APX and OPT contributions.

For 𝑑 = 2 at 𝑘 = 3, coordinate 1 contributes APX of 23.0 versus

OPT of −4.0, while coordinate 2 contributes APX of 6.0 versus

OPT of −2.0. The asymmetry between coordinates arises because

coordinate 1 carries the full Lorieau structure (with geometrically

growing values), while coordinate 2 carries only the fixed 4 versus

2 coefficients.

For 𝑑 = 3 at 𝑘 = 2, the per-coordinate APX contributions are 6.0,

4.0, 4.0 with OPT contributions −2.0, −2.0, 0.0. The zero OPT for

coordinate 3 indicates the LP relaxation can perfectly balance that

coordinate.

6 PROOF STRATEGIES
We outline three complementary directions toward proving the 2𝑑

conjecture.

3
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Figure 4: Per-coordinate APX and OPT contributions. (a) 𝑑 =

2, 𝑘 = 3. (b) 𝑑 = 3, 𝑘 = 2. Each coordinate is expected to
contribute ratio ≈ 2 to the total asymptotic ratio.

6.1 Direction 1: Per-Coordinate Potential
Decomposition

The total objective decomposes as a sum over 𝑑 coordinates. If one

can show that each coordinate independently contributes a ratio

approaching 2, the total ratio approaches 2𝑑 . Concretely:

• Coordinate 1 carries the Lorieau structure, and the 1D ratio

approaches 2 as 𝑘 → ∞ (known from Lorieau’s analysis).

• Each auxiliary coordinate 𝑗 ≥ 2 has coefficients 4 in 𝑋

versus 2 in 𝑌 , creating a 2:1 ratio.

• Total: 2 + (𝑑 − 1) × 2 = 2𝑑 .

The challenge is proving that the LP relaxation at each step does

not couple the coordinates in a way that improves the fractional

solution beyond the per-coordinate bound.

6.2 Direction 2: LP Dual Certificate Tracking
Instead of tracking the primal LP optimum (which is non-stationary),

track dual feasible solutions across rounding steps. At each step 𝑖 ,

construct a dual certificate that lower-bounds OPT of the resid-

ual instance. The geometric progression 𝑢𝑖 = 2
𝑘 (1 − 2

−𝑖 ) creates
self-similar dual structure at each “level.”

This approach is technically demanding due to the 𝑂 (𝑛𝑑) dual
constraints, but it is the most rigorous path and could yield tight

bounds.

6.3 Direction 3: Self-Similar Recurrence
The construction at parameter 𝑘 embeds the construction at 𝑘 − 1

as a sub-instance. Define recurrences:

APX(𝑘, 𝑑) = 𝑓 (APX(𝑘−1, 𝑑), 𝑘, 𝑑), (9)

OPT(𝑘, 𝑑) = 𝑔(OPT(𝑘−1, 𝑑), 𝑘, 𝑑) . (10)

Solving these yields the limiting ratio. This approach gives exact

formulas but depends on the tie-breaking rule of the algorithm

producing a predictable pattern.

7 DISCUSSION
Our computational study provides strong evidence for the 2𝑑 con-

jecture. The key findings are:

(1) Both APX and OPT scale linearly with instance size 𝑛, with

slopes that determine the asymptotic ratio.

(2) The per-coordinate decomposition shows each dimension

contributes approximately factor 2 to the total ratio.

(3) The LP relaxation value remains constant across rounding

steps in 1D (enabling Lorieau’s proof) but becomes non-

stationary in higher dimensions (the main obstacle).

(4) Brute-force verification confirms the algorithm is near-

optimal for small instances, with the gap growing as 𝑘

increases.

The main barrier to a rigorous proof is the non-stationary LP

optimum in higher dimensions. We conjecture that a combination

of per-coordinate decomposition (Direction 1) and dual certificate

tracking (Direction 2) can overcome this obstacle, potentially using

Direction 3 (self-similar recurrence) for the base case analysis.

Conjecture 1. For the family of𝑑-dimensional Gasoline instances
constructed via the FunSearch extension of Lorieau’s construction, the
approximation ratio of the iterative rounding algorithm satisfies

lim

𝑘→∞
APX(𝑘, 𝑑)
OPT(𝑘, 𝑑) = 2𝑑.

8 CONCLUSION
We have conducted a comprehensive computational study of the it-

erative rounding algorithm’s approximation ratio on the𝑑-dimensional

Gasoline instances discovered by Co-FunSearch [6]. Our results

confirm the conjectured limiting ratio of 2𝑑 and identify the non-

stationary LP optimum as the key obstacle to a formal proof. We

propose three complementary proof strategies and provide all code

and data for reproducibility.

This work highlights the productive synergy between AI-driven

instance discovery and human mathematical analysis: the Fun-

Search framework [7] found the hard instances, and our analysis

clarifies the structure that makes them hard and points toward

resolution of the open problem.
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