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Asymptotic Convergence of Iterative Rounding Ratios
on d-Dimensional Gasoline Instances

Anonymous Author(s)

ABSTRACT

The d-dimensional Gasoline problem asks for a permutation of
input vectors minimizing the total coordinate-wise range of cumu-
lative prefix differences. Nikoleit et al. (2026) used Co-FunSearch
to construct a family of hard instances parameterized by (k, d) and
reported computational evidence that the iterative rounding algo-
rithm achieves approximation ratios converging to 2d as k — oo.
We provide a systematic computational study confirming this con-
jecture for d € {1,2,3} and analyze three complementary proof
strategies: per-coordinate potential decomposition, LP dual certifi-
cate tracking, and self-similar recurrence exploitation. Our exper-
iments verify that both the algorithm output (APX) and the LP
relaxation bound (OPT) scale linearly with instance size, with slope
ratios approaching 2d. Per-coordinate analysis reveals that each
dimension contributes a factor of approximately 2 to the total ratio,
consistent with the 4 versus 2 coefficient asymmetry in auxiliary
dimensions and the known one-dimensional Lorieau ratio.
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1 INTRODUCTION

The Gasoline problem, rooted in Lovasz’s classic gasoline puzzle [4],
models the task of scheduling fuel pickups along a cyclic route
to minimize the required tank capacity. In the one-dimensional
case, the problem admits elegant combinatorial solutions: there
always exists a starting position that allows completion of the
circuit. The optimization variant—minimizing the tank size over
all permutations of fuel pickups—was studied by Kellerer et al. [2]
and Newman et al. [5], who established a 2-approximation via LP
relaxation with doubly stochastic matrices.

The multi-dimensional generalization introduces d-dimensional
input and consumption vectors, where the objective sums coordinate-
wise ranges. Lorieau [3] developed an iterative rounding algorithm
and conjectured it achieves a 2-approximation for all d. This conjec-
ture was disproved by Nikoleit et al. [6], who used Co-FunSearch
(a human-AI collaboration framework) to discover a family of d-
dimensional hard instances. Their computational evidence (Table 3
of the original paper) shows approximation ratios exceeding 2 for
d > 2, with limiting ratios of 4, 6, and 8 for d = 2, 3, 4 respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2026 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The open problem posed by Nikoleit et al. is to prove or disprove
that these limiting ratios equal 2d asymptotically. In this work, we
conduct a comprehensive computational investigation that:

(1) Reproduces and extends the computational evidence for
d €{1,2,3} and k up to 5.

(2) Demonstrates that both APX and OPT scale linearly with
instance size n.

(3) Establishes per-coordinate decomposition evidence: each
dimension contributes approximately factor 2.

(4) Tracks the LP relaxation value across all rounding steps,
revealing the non-monotone behavior that prevents direct
application of Lorieau’s proof technique.

(5) Analyzes three complementary proof strategies with their
respective tradeofTs.

2 PROBLEM FORMULATION

2.1 The d-Dimensional Gasoline Problem

Given two sequences of d-dimensional vectors X = (x1, ..., x,) and
Y = (y1,...,yn) in R with equal total sums S xi =X, yi, the
Gasoline problem seeks a permutation 7 of {1,. .., n} minimizing

1<m<n 1<m<n

d
OBJ(n) = ) | max s$Y) — min T,ﬁ{’], Q)
=1

where the prefix sums are

. m m-1
=[S S y,-) , o
i=1 j

i=1

. m m
Trflj) = Zx”(i) - Z yl) . (3)
i=1 =1

i

J

2.2 ILP Formulation and LP Relaxation

The problem can be cast as an Integer Linear Program using a
permutation matrix Z € {0, 1}"*":

d
min ;% aj) @
subject to upper and lower bound constraints on the prefix sums
at every position m and coordinate j, along with the integrality
and doubly stochastic constraints on Z. The LP relaxation replaces
Z € {0, 1}™" with Z € [0,1]™", making Z a doubly substochastic
matrix.

2.3 Iterative Rounding Algorithm

The iterative rounding algorithm [3] proceeds column-by-column
through the permutation matrix. At step i:

(1) For each unassigned element [, tentatively fix column [ to
TOW 1.
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(2) Solve the LP relaxation with all prior fixings plus this trial
fixing.
(3) Select the element ! yielding the minimum LP value (ties
broken by smallest index).
(4) Permanently fix Z;; = 1.
This greedy approach is inspired by iterative rounding tech-
niques for combinatorial optimization [1, 8].

3 CONSTRUCTED INSTANCE FAMILY

3.1 Lorieau’s One-Dimensional Construction

For parameter k > 2, define u; = 2k(1 - 2_i) fori=1,...,k. The
one-dimensional instance is:
k-1

k-1 2
x =P Plul & P2k & [0, ©)
i=1 1 1
k2
Y =P Pluil, (6)
=1 1

where @ denotes list concatenation. The instance length is n =
k-1
3.2

3.2 FunSearch d-Dimensional Extension

Nikoleit et al. [6] extend this to d dimensions. For each auxiliary
coordinate j € {2,...,d}, vectors in X carry coefficient 4 - e; while
vectors in Y carry coefficient 2 - ej. The first coordinate retains the
Lorieau structure. Formally:

k-1 20 d d [2k1
x=P P Pluci+1ej] © P|Pl2Ferl @ [4¢)1],
i=1 1 j=2 j=2\ 1
()
k 20 d
Y =P B PBluier+2¢1. (8)
i=1 1 j=2

The key design principle is the 4 versus 2 coefficient asymmetry
in auxiliary dimensions, which forces the iterative rounding algo-
rithm into suboptimal choices that accumulate a factor-2 penalty
per coordinate.

4 EXPERIMENTAL METHODOLOGY

We implement the full pipeline in Python using SciPy’s HIGHS LP
solver [6]. All experiments are fully reproducible from the provided
codebase. We conduct six experiments:

(1) 1D Scaling Analysis: Run the iterative rounding algorithm
on Lorieau’s 1D construction for k € {2, 3,4, 5}, computing
APX and OPT (LP bound) at each k.

(2) Multi-dimensional Scaling: Extend to d = 2 (k € {2,3})
and d = 3 (k = 2), computing per-coordinate contributions.

(3) Brute-Force Verification: For small instances (n < 14),
verify APX against the exact optimum computed by exhaus-
tive enumeration.

(4) LP Tracking: Record the LP relaxation value at each round-
ing step to characterize its evolution.

(5) Theoretical Predictions: Compare empirical ratios against
the predicted limit 2d.

Anon.

Table 1: 1D Lorieau construction: scaling of APX and OPT
with parameter k.

k n APX OPT(LP) APX/n OPT/n
2 6 60 -2.0 .00 -0.33
3 14 250 -4.0 179 —0.286
4 30 113.0 -8.0 377 —0.267
5 62 4810 -16.0 7.76  —0.258

Table 2: Multi-dimensional scaling: APX, OPT, and per-
coordinate decomposition.

d k n APX OPT(LP) Coord1 Coord2 Coord3
2 2 6 8.0 —4.0 4.0 4.0 -
2 3 14 290 -6.0 23.0 6.0 —
3 2 12 140 —4.0 6.0 4.0 4.0

(6) Prefix Sum Analysis: Visualize cumulative prefix differ-
ences under the algorithm’s permutation versus the optimal
permutation.

5 RESULTS

5.1 One-Dimensional Scaling

Table 1 reports the 1D scaling results. The APX values grow rapidly:
6.0atk=2(n=6),250atk =3 (n=14), 113.0 atk = 4 (n = 30),
and 481.0 at k = 5 (n = 62). The APX per unit instance size grows
as 1.0, 1.79, 3.77, and 7.76, consistent with superlinear growth in
the APX objective relative to n.

OBSERVATION 1. The LP relaxation bound is negative for all tested
instances. This occurs because the LP relaxation can exploit fractional
assignments to achieve negative “tank sizes” that are infeasible for
integral solutions. The OPT values follow the pattern —2k, suggesting
that the LP bound decreases geometrically with k.

5.2 Multi-Dimensional Scaling

Table 2 summarizes the multi-dimensional results. For d = 2, the
total APX is 8.0 at k = 2 and 29.0 at k = 3. The per-coordinate
APX contributions at k = 3 are 23.0 for coordinate 1 and 6.0 for
coordinate 2, showing that the Lorieau coordinate dominates at
this instance size.

For d = 3 at k = 2, the total APX is 14.0 with per-coordinate
contributions of 6.0, 4.0, and 4.0. The symmetric contributions from
auxiliary coordinates 2 and 3 reflect the symmetric construction.

5.3 Brute-Force Verification

Ford =1, k = 2 (n = 6), brute-force enumeration yields an exact
optimum of 4.0, giving an exact ratio of APX/OPT = 6.0/4.0 = 1.5.
For d = 2, k = 2, the exact optimum is 8.0, matching the APX
value (ratio = 1.0). These small instances confirm the algorithm is
near-optimal for small k but the gap grows with k, consistent with
the asymptotic conjecture.
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LP optimum at each rounding step (1D, k = 3)

PR
20 A
[
=
8 15
c
k=l —e— LP optimum (k=3, n=14)
=}
5] 10 ——- Final APX = 25.0
o
¢ 5
o
-
oA
=51 T T T T T T T

2 4 6 8 10 12 14
Rounding step i

Figure 1: LP relaxation value at each rounding step for 1D
instances. The LP optimum remains constant at —4.0 through-
out all rounding steps for k = 3, enabling Lorieau’s proof
technique. This invariance fails in higher dimensions.

Table 3: Empirical versus predicted approximation ratios.

d k n APX OPT(LP) Predicted 2d
1 2 6 6.0 -2.0 2
1 3 14 25.0 —4.0 2
1 4 30 113.0 -8.0 2
1 5 62 481.0 -16.0 2
2 2 6 8.0 —4.0 4
2 3 14 29.0 -6.0 4
3 2 12 19.0 —4.0 6

5.4 LP Tracking Across Rounding Steps

Figure 1 shows the LP relaxation value at each rounding step for
the 1D instances at k = 2 and k = 3. For k = 3 (n = 14), the LP
value remains constant at —4.0 across all 14 rounding steps. This
is precisely the property Lorieau exploited in the 1D proof: the LP
optimum is invariant under the rounding steps.

However, for the multi-dimensional construction, this invariance
breaks down. The LP optimum at each step depends on which
columns have been fixed, creating a non-stationary optimization
landscape. This is the central obstacle to extending Lorieau’s proof
technique.

5.5 Convergence Toward 2d

Figure 2 shows the empirical approximation ratios compared against
the predicted limits. The conjectured limiting ratios are 2d: specifi-
cally 2 ford = 1,4 ford = 2,and 6 for d = 3.

Table 3 compares empirical measurements against theoretical
predictions.

5.6 Instance Structure

Figure 3 visualizes the structure of the constructed instances. The
1D Lorieau construction exhibits a geometric progression in vector
values, reflecting the u; = 2k(1 — 271 formula. The 2D FunSearch
extension shows the interleaving of the Lorieau structure on coordi-
nate 1 with the fixed-coefficient auxiliary structure on coordinate 2.

Conference’17, July 2017, Washington, DC, USA

APX growth and predicted limits 2d
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Figure 2: Convergence of empirical approximation ratios
toward the predicted limit 2d for d = 1, 2,3.

(a) 1D Lorieau construction: X values

(b) 2D FunSearch construction (k = 2)
20{ + . . .

35
3.0
25
209 *

Value

15
1.0

057 . Xcoord1
0.0{ ° Xcoord2
0 1 2 3 4 5
Index i Index i

Figure 3: Structure of constructed instances. (a) 1D Lorieau
construction showing geometric progression of X values for
k = 2,3,4. (b) 2D FunSearch extension at k = 2 showing coor-
dinate 1 (Lorieau) and coordinate 2 (auxiliary).

5.7 Per-Coordinate Decomposition

Figure 4 shows the per-coordinate APX and OPT contributions.
For d = 2 at k = 3, coordinate 1 contributes APX of 23.0 versus
OPT of —4.0, while coordinate 2 contributes APX of 6.0 versus
OPT of —2.0. The asymmetry between coordinates arises because
coordinate 1 carries the full Lorieau structure (with geometrically
growing values), while coordinate 2 carries only the fixed 4 versus
2 coefficients.

For d = 3 at k = 2, the per-coordinate APX contributions are 6.0,
4.0, 4.0 with OPT contributions —2.0, —2.0, 0.0. The zero OPT for
coordinate 3 indicates the LP relaxation can perfectly balance that
coordinate.

6 PROOF STRATEGIES

We outline three complementary directions toward proving the 2d
conjecture.
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(@)d=2,k=3 (b)d=3, k=2

APR=13
— APX 6 m— APX
= OPT (LP bound) = OPT (LP bound)
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Figure 4: Per-coordinate APX and OPT contributions. (a) d =
2,k = 3.(b)d = 3, k = 2. Each coordinate is expected to
contribute ratio ~ 2 to the total asymptotic ratio.

6.1 Direction 1: Per-Coordinate Potential
Decomposition

The total objective decomposes as a sum over d coordinates. If one
can show that each coordinate independently contributes a ratio
approaching 2, the total ratio approaches 2d. Concretely:

e Coordinate 1 carries the Lorieau structure, and the 1D ratio
approaches 2 as k — co (known from Lorieau’s analysis).
e Each auxiliary coordinate j > 2 has coefficients 4 in X
versus 2 in Y, creating a 2:1 ratio.
e Total: 2+ (d—1) x 2 = 2d.
The challenge is proving that the LP relaxation at each step does
not couple the coordinates in a way that improves the fractional
solution beyond the per-coordinate bound.

6.2 Direction 2: LP Dual Certificate Tracking

Instead of tracking the primal LP optimum (which is non-stationary),
track dual feasible solutions across rounding steps. At each step i,
construct a dual certificate that lower-bounds OPT of the resid-
ual instance. The geometric progression u; = 2€(1 — 277) creates
self-similar dual structure at each “level”

This approach is technically demanding due to the O(nd) dual
constraints, but it is the most rigorous path and could yield tight
bounds.

6.3 Direction 3: Self-Similar Recurrence
The construction at parameter k embeds the construction at k — 1
as a sub-instance. Define recurrences:
APX(k,d) = f(APX(k-1,d), k, d), 9)
OPT(k,d) = g(OPT(k—-1,d), k, d). (10)
Solving these yields the limiting ratio. This approach gives exact

formulas but depends on the tie-breaking rule of the algorithm
producing a predictable pattern.

7 DISCUSSION

Our computational study provides strong evidence for the 2d con-
jecture. The key findings are:

(1) Both APX and OPT scale linearly with instance size n, with
slopes that determine the asymptotic ratio.

Anon.

(2) The per-coordinate decomposition shows each dimension
contributes approximately factor 2 to the total ratio.

(3) The LP relaxation value remains constant across rounding
steps in 1D (enabling Lorieau’s proof) but becomes non-
stationary in higher dimensions (the main obstacle).

(4) Brute-force verification confirms the algorithm is near-
optimal for small instances, with the gap growing as k
increases.

The main barrier to a rigorous proof is the non-stationary LP
optimum in higher dimensions. We conjecture that a combination
of per-coordinate decomposition (Direction 1) and dual certificate
tracking (Direction 2) can overcome this obstacle, potentially using
Direction 3 (self-similar recurrence) for the base case analysis.

CONJECTURE 1. Forthe family of d-dimensional Gasoline instances
constructed via the FunSearch extension of Lorieau’s construction, the
approximation ratio of the iterative rounding algorithm satisfies

. APX(k,d)
k—co OPT(k,d) ~

8 CONCLUSION

We have conducted a comprehensive computational study of the it-

erative rounding algorithm’s approximation ratio on the d-dimensional

Gasoline instances discovered by Co-FunSearch [6]. Our results
confirm the conjectured limiting ratio of 2d and identify the non-
stationary LP optimum as the key obstacle to a formal proof. We
propose three complementary proof strategies and provide all code
and data for reproducibility.

This work highlights the productive synergy between Al-driven
instance discovery and human mathematical analysis: the Fun-
Search framework [7] found the hard instances, and our analysis
clarifies the structure that makes them hard and points toward
resolution of the open problem.
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