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ABSTRACT
We computationally investigate the minimax online multicalibra-
tion rates for prediction-independent binary group families whose
cardinality |𝐺 | grows with the time horizon𝑇 between constant and
Θ(𝑇 ). Recent work established tight bounds at these two extremes:
constant |𝐺 | reduces to marginal calibration, while |𝐺 | = Θ(𝑇 )
yields strictly harder rates. We systematically explore the intermedi-
ate regime, including |𝐺 | = polylog(𝑇 ). Our experiments across six
scaling regimes (|𝐺 | ∈ {𝑂 (1),𝑂 (log log𝑇 ),𝑂 (log𝑇 ),𝑂 (log2𝑇 ),𝑂 (

√
𝑇 ),𝑂 (𝑇 )})

provide evidence that multicalibration rates interpolate smoothly
across intermediate group family sizes, with no sharp threshold
separating the complexity from marginal calibration. The rate ex-
ponent decreases smoothly as |𝐺 | grows, with the polylogarithmic
regime showing approximately 1.5–2× separation from marginal
calibration. Second-difference analysis confirms the absence of dis-
continuities in the rate function.
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1 INTRODUCTION
Multicalibration [5] strengthens the classical notion of calibra-
tion [2, 3] by requiring calibrated predictions not just overall but
conditional on membership in each group from a specified family
𝐺 . This notion has found applications in algorithmic fairness [6]
and online prediction [4, 7].

Collina et al. [1] recently established tight lower bounds for on-
line multicalibration with prediction-independent groups, showing
that when |𝐺 | = Θ(𝑇 ) the problem is strictly harder than marginal
calibration, while constant |𝐺 | reduces to the marginal case. They
explicitly posed the question of intermediate group family sizes as
open.

We address this question computationally, mapping the multi-
calibration rate landscape across six scaling regimes and testing for
the presence of sharp thresholds.

2 SETUP
Consider an online prediction game over 𝑇 rounds. At each round
𝑡 , a forecaster predicts 𝑝𝑡 ∈ [0, 1], an adversary reveals group
memberships 𝑔𝑡 ∈ {0, 1} |𝐺 | and an outcome 𝑦𝑡 ∈ {0, 1}. The multi-
calibration error is:

MCE = max
𝑔∈𝐺

max
𝑏∈B

���E[𝑝𝑡 − 𝑦𝑡 | 𝑔 (𝑔)𝑡 = 1, 𝑝𝑡 ∈ 𝑏]
��� (1)

where B partitions [0, 1] into calibration buckets. We consider
prediction-independent groups where 𝑔𝑡 is independent of 𝑝𝑡 .

2.1 Scaling Regimes
We test six regimes for |𝐺 | (𝑇 ): constant (|𝐺 | = 5), 𝑂 (log log𝑇 ),
𝑂 (log𝑇 ), 𝑂 (log2𝑇 ) (polylog), 𝑂 (

√
𝑇 ), and 𝑂 (𝑇 ).

Figure 1: Multicalibration error and separation ratio across
scaling regimes. Rates interpolate smoothly between con-
stant and linear group family sizes.

Figure 2: Normalized multicalibration error vs. group family
size. The smooth curve suggests no sharp threshold in |𝐺 |.

3 RESULTS
3.1 Rate Landscape
Figure 1 shows multicalibration error and its ratio to marginal
calibration error across regimes. The ratio increases smoothly from
near 1.0 for constant groups to substantially larger values for the
linear regime, with no abrupt transitions.

3.2 Threshold Detection
Figure 2 plots normalized multicalibration error (relative to mar-
ginal baseline) as a function of |𝐺 | for fixed 𝑇 . The curve rises
smoothly without discontinuities, providing evidence against a
sharp threshold.

3.3 Scaling Exponents
Figure 3 shows the estimated rate exponent 𝛼 (where error ∼ 𝑇 −𝛼 )
for each regime. The exponent decreases smoothly from the con-
stant regime to the linear regime, consistent with a continuous
dependence of the minimax rate on |𝐺 |/𝑇 .
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Figure 3: Estimated rate exponents by scaling regime. The
decrease is smooth and monotone.

Figure 4: Multicalibration error and second differences as
functions of |𝐺 |. Small second differences confirm smooth
behavior.

3.4 Smoothness Analysis
Figure 4 presents the error function and its second differences.
The second differences are uniformly small relative to the function
values, confirming smooth interpolation. A sharp threshold would
manifest as a large second difference at the transition point, which
we do not observe.

4 DISCUSSION
Our computational evidence supports the following conclusions:

• No sharp threshold: The multicalibration complexity in-
terpolates smoothly between the constant and linear regimes,
suggesting that theoretical bounds should seek continuous
rate functions rather than phase transitions.

• Polylog regime: At |𝐺 | = 𝑂 (log2𝑇 ), multicalibration is
mildly harder than marginal calibration (roughly 1.5–2×),
suggesting this regime is closer to the “easy” end of the
spectrum.

• Conjectured rate: Our data are consistent with a mini-
max rate of the form 𝑇 −𝛼 ( |𝐺 |/𝑇 ) where 𝛼 (·) is a smooth,
decreasing function.

5 CONCLUSION
We provide computational evidence that minimax online multicali-
bration rates interpolate smoothly across intermediate group fam-
ily sizes for prediction-independent groups. The polylogarithmic
regime shows moderate separation from marginal calibration, and

no sharp threshold is detected. These findings suggest that formal
lower and upper bound analyses for intermediate |𝐺 | should aim
for smooth rate functions parameterized by the group-to-horizon
ratio.
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