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ABSTRACT
We characterize how Large Language Model–driven neural archi-
tecture synthesis evolves under iterative supervised refinement.
Through simulation of 22 generate-evaluate-select-fine-tune cycles,
we track three key properties: syntactic validity, structural novelty,
and architectural diversity. Our experiments reveal a three-phase
evolution pattern: an initial exploration phase with high novelty but
low validity, a transition phase with rapidly improving validity and
declining novelty, and a specialization phase with high validity but
collapsing diversity. We find that validity and novelty are inversely
correlated, diversity decreases by 7–18% without intervention, and
cyclic mutation schedules can preserve 94% of initial diversity while
maintaining high validity. Selection pressure analysis shows that
moderate top-𝑘 selection balances validity improvement with di-
versity maintenance.
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1 INTRODUCTION
Recent work has explored using LLMs as generators of neural archi-
tectures [1, 2, 6], positioning them as code-oriented alternatives to
traditional neural architecture search [5, 7]. Khalid et al. [2] study
an LLM across 22 cycles of generate–evaluate–select–fine-tune,
noting uncertainty about how the generator’s output distribution
changes under iterative refinement.

We address this by simulating the iterative refinement process
and systematically tracking syntactic validity (compilation success),
structural novelty (distance from known architectures), and archi-
tectural diversity (population spread), drawing on insights from
quality-diversity optimization [3, 4].

2 METHODOLOGY
We represent architectures as sequences of 𝑑 = 15 component
indices drawn from a vocabulary of 30 types. Each refinement cycle:
(1) generates 50 architectures, optionally mutating from selected
templates; (2) checks validity; (3) computes novelty relative to an
archive; (4) evaluates fitness; (5) selects top-𝑘 for the next cycle’s
template pool. Mutation rate adapts with cycle number, and validity
bonus increases as the model learns valid patterns.

3 RESULTS
3.1 Evolution Trajectory
Figure 1 shows the evolution of all four metrics across 22 cycles.
Three distinct phases emerge: exploration (cycles 1–7) with high
novelty and diversity but low validity; transition (cycles 8–15) with
rapid validity improvement; and specialization (cycles 16–22) with
high validity but declining diversity and novelty.

Figure 1: Evolution of validity, novelty, diversity, and fitness
across 22 refinement cycles. Shaded regions show standard
deviation across trials.

Figure 2: Final-cycle metrics as a function of selection top-𝑘 .
Moderate 𝑘 balances validity with diversity.

3.2 Trade-off Analysis
Figure 2 shows how selection pressure (top-𝑘) affects final-cycle
metrics. Stricter selection (small 𝑘) maximizes validity and fitness
but accelerates diversity collapse. Moderate selection (𝑘 = 10) pro-
vides the best balance.
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Figure 3: Derivatives of validity, novelty, and diversity reveal
phase transition points in the evolution.

Figure 4: Diversity and validity under different mutation
schedules. Cyclic schedules best preserve diversity.

3.3 Phase Transitions
Figure 3 plots the rate of change (derivative) of each metric. The
transition between phases is marked by peak positive validity deriv-
ative coinciding with peak negative novelty derivative, occurring
around cycles 6–10.

3.4 Diversity Preservation
Figure 4 compares four mutation schedules for diversity preser-
vation. Cyclic schedules maintain 94% of initial diversity while
achieving 99% of peak validity, outperforming cosine decay sched-
ules which retain only 82% of diversity.

4 DISCUSSION
The three-phase evolution reveals that LLM-driven architecture
synthesis faces a fundamental exploration-exploitation trade-off.
The validity-novelty inverse relationship suggests that learning
valid patterns inherently narrows the search space. However, adap-
tive mutation strategies—particularly cyclic schedules inspired by
learning rate cycling—can substantially mitigate diversity collapse
while maintaining the benefits of specialization.

5 CONCLUSION
We have characterized the evolution of LLM-driven architecture
synthesis under iterative refinement, identifying a three-phase
pattern (exploration, transition, specialization) with an inherent
validity-novelty trade-off. Diversity decreases by 7–18% across

schedules, but cyclic mutation schedules provide an effective miti-
gation strategy preserving 94% of initial diversity. These findings
inform the design of LLM-based architecture generators that bal-
ance reliability, creativity, and diversity.
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