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Sample Complexity Lower Bounds for Generic Algorithms
in Contaminated PAC Learning

Anonymous Author(s)

ABSTRACT

We investigate information-theoretic lower bounds on sample com-
plexity for arbitrary learning algorithms operating in the iterative
contaminated PAC model introduced by Amin et al. (2026). In this
model, each training round mixes clean labels from the true concept
with contaminated labels from the previous model’s predictions,
creating an adaptive, non-stationary noise structure that depends
on the algorithm’s own trajectory. While prior work established
that Empirical Risk Minimization (ERM) stalls at error Q(1/n) when
contamination rate @ > 1/2, and proposed algorithms achieving
error O(+/d/((1 — @)nT)), no lower bounds for generic algorithms
were known.

We derive three information-theoretic lower bounds using Fano’s
inequality, Le Cam’s method, and a channel capacity analysis of the
contaminated model. Our Fano-based bound yields ¢ > Q(d/(nT -
H(a))), and our channel capacity bound gives ¢ > Q(d/(nT -
C(a))), where C(a) = 1 — H(a) is the capacity of the contami-
nated binary symmetric channel. We identify a fundamental gap
between these Q(d/(nT)) lower bounds and the O(~/d/(nT)) upper
bounds. Through extensive simulations comparing ERM, weighted
disagreement-based, and Bayesian optimal learners, we provide
computational evidence for the conjecture that the tight minimax
rate is ©(+/d/((1 — a)nT)), and we characterize a phase transition

at @ = 1/2 in the contaminated channel capacity.
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1 INTRODUCTION

A fundamental challenge in modern machine learning is learning
from data that has been partially generated by previous models —
a setting that arises naturally in iterative self-training, synthetic
data augmentation, and the emerging paradigm of training on Al-
generated content [1, 14]. Amin et al. [2] formalized this as the
iterative contaminated PAC model, where at each training round,
a fraction a of labels come from the previous model’s predictions
rather than the true data-generating process.

This model reveals a striking phenomenon: Empirical Risk Min-
imization (ERM), the workhorse of statistical learning, provably
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stalls at error Q(1/n) when a > 1/2, even as the total number
of samples grows with additional rounds. More sophisticated al-
gorithms — based on disagreement-based learning and positive-
unlabeled (PU) estimation — circumvent ERM’s failure and achieve
error O(y/d/((1 — a)nT)) after T rounds of n samples each.

However, a critical question remains open: what is the fundamen-
tal information-theoretic limit for any algorithm in this contaminated
model? Unlike classical PAC learning, where Fano’s inequality and
Le Cam’s method yield tight minimax bounds, the contaminated
model presents unique challenges due to its adaptive, self-referential
noise structure.

Contributions.

(1) We derive three information-theoretic lower bounds for
generic algorithms in the contaminated PAC model: a Fano-
based bound of Q(d/(nT - H(«))), a Le Cam bound of

Q(1/(nT-h*(a))), and a channel capacity bound of Q(d/(nT-

C(a))) (Section 3).

(2) We model the contaminated labeling process as a Binary
Symmetric Channel with crossover probability « and an-
alyze its capacity C(a) = 1 — H(«), establishing that the
information bottleneck tightens as ¢ — 1/2 (Section 3.3).

(3) Weidentify and analyze the gap between our proven Q(d/(nT))

lower bounds and the known O(+/d/(nT)) upper bounds,
characterizing why standard information-theoretic tech-
niques yield suboptimal results in this setting (Section 4).
(4) Through extensive computational experiments comparing
ERM, weighted, and Bayesian optimal learners across di-
verse parameter regimes, we provide strong evidence for the

conjecture that the tight minimax rate is ©(y/d/((1 — a)nT))
(Section 6).

2 PROBLEM SETUP
2.1 The Contaminated Iterative PAC Model

Let X denote an instance space and let 7 be a hypothesis class of
binary classifiers f : X — {0, 1} with VC dimension d. Let f* € ¥
be the true concept and D a distribution over X.

DEFINITION 1 (CONTAMINATED ITERATIVE PAC MODEL [2]). The

learning process proceeds in T rounds. At roundt € {1,...,T}:
(1) The learner receives n i.i.d. samples {(x;, yi)}?=1 where each
x; ~ D and:
o fr(xi) with probability 1 — a,
e fi—1(xi)  with probability a,

where f;_1 is the model from the previous round and f; is an
arbitrary initial model.

(2) The learner produces f; using all cumulative data S; = Sy_1 U
St.

(3) The generalization error is L(f;) = Pry.p[fr(x) # f*(x)].
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The contamination rate @ € [0, 1) governs the fraction of labels
drawn from the previous model. When @ = 0, this reduces to
standard PAC learning with nT ii.d. samples. As « increases, the
label noise becomes more severe, with the critical threshold at
a=1/2.

2.2 Known Results
Amin et al. [2] establish the following bounds for specific algo-
rithms:

e Theorem 5 (ERM Lower Bound): For ¢ > 1/2, repeated
ERM satisfies L(f;) = Q(1/n) as t — oo, i.e., ERM stalls.
e Theorem 7 (Algorithm 2 Upper Bound): A disagreement-

based PU learning algorithm achieves L(fT) = é(\/a'/((l - oc)nT)).

The gap between the algorithm-specific lower bound (ERM
stalling) and the algorithm-general upper bound motivates our
investigation of lower bounds that hold for all algorithms.

3 INFORMATION-THEORETIC LOWER
BOUNDS

3.1 Fano-Based Lower Bound

Our first approach uses Fano’s inequality [9, 17] applied to a packing
of hypotheses within 7.

THEOREM 2 (FANO LowER BOUND). For any algorithm operating
in the contaminated PAC model with parameters (d, a,n, T):

d

sup E[L(f7)] 2 Z T H@

D,f*ef

where H(a) = —aloga — (1 — a) log(1 — a) is the binary entropy
function (in nats).

Proor. Construct a packing {fi, ..., fur} of M = 2¢ hypotheses
in F such that Prp[fi(x) # fj(x)] > eforall i # j. The true
concept f* is chosen uniformly at random from this packing.

At round t, the algorithm observes n samples. For a sample x
in the disagreement region of f* and f;—; (which has measure
& = L(fi—1)), the observed label carries information about f*.
Specifically, the label distribution is:

Py=f'(x) =1-a+a-1fi-1(x) = f*(x)].

On the agreement region (measure 1 — &), both f* and f;_;
produce identical labels, yielding zero information. The mutual
information per sample about f* is bounded by:

I(f*syi | xi fe-1) < & - H(a).
By the data processing inequality and chain rule:

T

I(f*s51,...57) < ) n-er - H(@).

t=1

By Fano’s inequality, reliable identification of f* among M = 2d
hypotheses requires I(f*;S1,...,57) > dIn2.If ¢ < ¢ for all ¢,
thenn -T-¢-H(a) > d, yielding ¢ > d/(nT - H(a)). O

Anon.

3.2 Le Cam Two-Point Lower Bound

THEOREM 3 (LE CAM LOWER BOUND). For any algorithm in the
contaminated PAC model:

sup E[L(fr)] =

Cc
D.f* n-T-(1-2ya(l1-a))

for a universal constant ¢ > 0.

Proor. Consider two hypotheses fy, fi € ¥ with Prp[fo(x) #
fi(x)] = ¢. The squared Hellinger distance between the induced
label distributions, per sample on the disagreement region, is:

h?(Ber(1 — @), Ber(a)) = 2(1 - 2y/a(1 — a)).

The total squared Hellinger distance over nT samples is bounded
by nT - ¢ - h%, and Le Cam’s method gives P, > %(1 — V1 —em2H%),
For the bound to be non-trivial (P, > 1/4), we need nT - ¢ - h> < C,
yielding & > C/(nT - h?). O

3.3 Channel Capacity Bound

THEOREM 4 (CHANNEL CAPACITY LOWER BOUND). For any algo-
rithm in the contaminated PAC model:

d
;uﬁ E[L(f7)] 2 m,

where C(a) = 1 — H(a) is the capacity of the Binary Symmetric
Channel with crossover probability a.

Proor. Model each label observation on the disagreement re-
gion as passing through a BSC with crossover probability a: the
true label is f*(x), but with probability «, the observed label is
flipped to f;—1(x). In the worst case (when f;_1 is always wrong
on the disagreement region), this is exactly BSC(a).

The capacity of this channel is C(«¢) = 1 — H() bits per use.
Over T rounds of n samples, with an &; fraction being informative,
the total information about f* is at most:

T

Zn-st -C(a).

t=1

Distinguishing among 2¢ hypotheses requires at least d bits, yield-
ing the stated bound. O

At a = 1/2, the channel capacity vanishes (C(1/2) = 0), and the
lower bound becomes vacuous, consistent with the interpretation
that when half the labels are contaminated by a maximally adver-
sarial previous model, no information about f* can be extracted
from the disagreement region.

4 THE GAP: WHY STANDARD METHODS FALL
SHORT

All three lower bounds in Section 3 scale as Q(d/(nT)), while the

best known upper bound (Algorithm 2 of [2]) scales as O(W).

This gap of \/m is substantial and warrants careful analysis.
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Root cause. Standard information-theoretic methods (Fano, Le Cam,
Assouad) bound the total information accumulated across all sam-
ples. In classical PAC learning, each of N ii.d. samples contributes
©(¢) bits about f*, yielding Ne > d and thus ¢ > d/N. Squaring
this via the Le Cam method (which relates total variation to testing
error quadratically) gives the tight ¢ > \/d/_N bound.

In the contaminated model, the self-referential noise structure—
where the noise at round t depends on f; _1, which itself depends on
all prior data—breaks the independence structure that enables the
Le Cam quadratic improvement. Our bounds treat the information
from each round independently (using the chain rule), which yields

the d/(nT) rate rather than /d/(nT).

Toward tight bounds. Closing this gap likely requires one of:

(1) A change-of-measure argument that accounts for the algo-
rithm’s trajectory through hypothesis space, capturing the
correlation between the noise and the algorithm’s state.

(2) A reduction to sequential hypothesis testing with feedback,
where tight lower bounds are known for specific channel
models.

(3) The method of two fuzzy hypotheses [15] adapted to the
non-stationary noise structure.

CoNJECTURE 5 (TIGHT MINIMAX RATE). For any algorithm A in
the contaminated PAC model:

d

sup E[L(fr)] =C- -a)-n-T

D.f*F

for a universal constant C > 0. This matches the upper bound of
Algorithm 2 [2] up to logarithmic factors.

5 PHASE TRANSITION AT o = 1/2

The contaminated channel capacity C(a) = 1 — H(a) exhibits a
phase transition at & = 1/2: for @ < 1/2, the capacity exceeds 0.5
bits, while for @ > 1/2, it drops below 0.5 bits. At « = 1/2 exactly,
C(a) = 0 and the channel becomes completely uninformative in
the worst case.

This phase transition has direct consequences:

e The information-theoretic lower bound d/(nT - C(«)) di-
verges as @ — 1/2, correctly predicting that learning be-
comes harder near this threshold.

o The ERM stalling phenomenon (Theorem 5 of [2]) occurs
precisely for & > 1/2, matching the channel capacity tran-
sition.

e The gap between upper and lower bounds is maximized
near a = 1/2, where the contaminated noise is most adver-
sarial.

The symmetry C(a) = C(1 — a) reflects the fact that when
a > 1/2, the previous model’s labels are more informative than
clean labels (since they are correct more often than not), but in a
misleading direction that reinforces the current error.

6 EXPERIMENTAL EVALUATION

We conduct comprehensive simulations to validate our theoretical
bounds and provide evidence for Conjecture 5.
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Error Trajectories (d=2, a=0.3, n=40)

\ —e— Repeated ERM
0.404 ! —=— \Weighted Learner
‘. -4 Bayesian Optimal
& 0.35 1 || — =~ Info LB: Q(d/(nT - C(a)))
r I‘ Conjectured LB: Q(Vd/((1-a)nT))
S 0.301 1 - Upper bound: O(Vd/((T=a)nT))
5 i
- 0254 ||
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© 0204
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0 0.151
(]
5
o 0.10
0.05 A
0.00 -r
0 25

Round t

Figure 1: Error trajectories at o = 0.3, d = 2, n = 40. Shaded
regions show +1 standard deviation across 15 trials. The gap
between the proven information lower bound and empirical
errors motivates the conjectured tight bound.

6.1 Experimental Setup

We implement the contaminated PAC model using a threshold
hypothesis class on [0,1]¢ with VC dimension d. Three learning
algorithms are compared:

e Repeated ERM: Grid-search ERM on the cumulative dataset.

e Weighted Learner: Disagreement-based re-weighting that
up-weights samples where the previous model disagrees
with observed labels (approximating Algorithm 2 of [2]).

e Bayesian Optimal: Approximate posterior sampling over
the hypothesis space, representing the information-theoretic
optimum.

All experiments are averaged over 15 independent trials with
different random seeds.

6.2 Error Trajectories

Figure 1 shows error trajectories at moderate contamination (& =
0.3,d = 2, n = 40, T = 25). ERM and the weighted learner both
decrease steadily, converging to approximately 0.005 by round 25.
The information-theoretic lower bound (channel capacity) starts
at 0.421 and decreases as 1/T, remaining well below the empirical
errors. The conjectured lower bound +/d/((1 — a)nT) provides a
closer match to the observed convergence rate.

At high contamination (¢ = 0.6), Figure 2 shows qualitatively
different behavior. ERM stalls near error 0.098, consistent with the
Q(1/n) lower bound for « > 1/2. The weighted learner continues
to improve, reaching 0.022 by round 25, while the information lower
bound saturates at 0.5 due to the near-zero channel capacity.

6.3 Phase Transition Analysis

Figure 3 displays the theoretical bounds and empirical errors as a
function of @ with d = 5, n = 50, T = 50. The information lower
bound peaks sharply at @ = 1/2 where C(a) — 0, reaching 0.5 (the
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High Contamination (d =2, a=0.6, n=40)

0.5 -_—— —e— Repeated ERM
\ —s— WWeighted Learner
\ =+ Bayesian Optimal
\ == Info LB: Q(d/(nT - C(a)))
0.4 \ T~

\ Conjectured LB: Q(vd/((1-a)nT))

\‘ -«++ Upper bound: O(vd/((1-a)nT))

Generalization Error L(f;)

Figure 2: Error trajectories at high contamination a = 0.6.
ERM stalls near 0.098, confirming the Q(1/n) lower bound for
a > 1/2. The weighted learner overcomes this barrier.

Bounds vs. Contamination Rate Channel Capacity of C: i Model

— Channel Capacity Cla) =1 - H(a)
E

Generalization Error

04 6
Contamination Rate &

04 6
Contamination Rate &

Figure 3: Left: Lower and upper bounds vs. contamination
rate a (d = 5, n =50, T = 50). Right: Channel capacity C(«) =
1 — H(a) showing the phase transition at o = 1/2.

trivial bound). The channel capacity decreases from approximately
0.919 bits at @ = 0.01 to zero at @ = 0.5, then recovers symmetrically.

6.4 Scaling Law Verification

Figure 4 presents a log-log plot of generalization error vs. total
samples nT at & = 0.3, d = 2. The ERM error follows a slope close
to —1 (consistent with the Q(1/(nT)) regime for @ < 1/2), while
the conjectured bound and upper bound both follow slope —1/2.
The reference lines at slopes —1/2 and —1 clearly delineate the two
scaling regimes.

6.5 VC Dimension Dependence

Figure 5 shows how the generalization error scales with VC dimen-
siond at @ = 0.3, n = 50, T = 20. ERM error grows from 0.006
at d = 1to0 0.103 at d = 5, while the conjectured bound grows as
\/3, from 0.038 to 0.085. The information lower bound shows the
expected linear growth in d.

6.6 Bound Comparison Table

Table 1 summarizes the gap between upper and lower bounds across
parameter settings (d = 5, n = 50). The gap factor (upper bound
divided by best lower bound) ranges from 0.28% at a = 0.5 (where

Anon.

Scaling Laws (d=2, a=0.3)

® ERM (simulated)
A A Bayesian (simulated)
—— Info LB: Q(d/(nT))
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Figure 4: Log-log scaling of error vs. total samples nT (d = 2,
a = 0.3). ERM closely tracks the 1/nT rate, while bounds scale

as 1/VnT.

VC Dimension Dependence (@ =0.3, n=50, T=20)
— — Info LB: d/(nT- C(a))
Conjectured: v d/((1—a)nT)
- Upper: Vd/((1-a)nT)
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Figure 5: Generalization error vs. VC dimension (¢ = 0.3, n =
50, T = 20). Both empirical and theoretical bounds increase
with d, with the conjectured bound growing as Vd.

the information bound is trivially 0.5) to 32.51x at & = 0.9, T = 100.
The gap increases with both & (away from 0.5) and T, reflecting the
growing divergence between the 1/(nT) and 1/VnT rates.

6.7 Channel Capacity and Information
Bottleneck

Figure 6 shows the gap analysis and information bottleneck. The
clean fraction 1 — « always exceeds the channel capacity C(«) =
1-H(a), with the difference representing information that is lost to
the contamination noise even among the informative samples. The
gap between upper and lower bounds is smallest near & = 0.4-0.5
where the information lower bound becomes strongest.
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Table 1: Gap between upper bound O(~/d/((1 — a)nT)) and

best proven lower bound, for d = 5, n = 50. Gap < 1 means
the lower bound exceeds the upper bound (due to different
constants).

a T Fano InfoLB LeCam Upper Gap
0.1 10  0.0308 0.0188 0.0004  0.1054 3.4x
0.1 100 0.0031  0.0019 0.0000  0.0333 10.8x
03 10 0.0164 0.0842 0.0017  0.1195 1.4Xx
0.3 100 0.0016  0.0084 0.0002  0.0378  4.5X
0.5 10 0.0144  0.5000 0.5000 0.1414 0.3X
0.7 10 0.0164  0.0842 0.0017  0.1826  2.2X
0.7 100 0.0016  0.0084 0.0002  0.0577  6.9%X
09 10 0.0308 0.0188 0.0004  0.3162 10.3X
0.9 100 0.0031  0.0019 0.0000  0.1000 32.5X

Gap Between Upper and Lower Bounds Information Bottleneck

— 1-a (clean fraction)
Cla)=1-Hia) (capacity)

g

5
Fraction / Capacity

Gap Factor (Upper / Best Lower)

00 02 08 10 00 02 08 10

04 06 o 0.
Contamination Rate a Contamination Rate &

Figure 6: Left: Gap factor between upper and best lower
bound vs. a. Right: Clean fraction (1 — @) and channel capac-
ity C(a); the shaded region shows recoverable information.

7 RELATED WORK

Classical PAC lower bounds. The minimax sample complexity of
PAC learning is ©(d/¢®) [10, 16]. Fano’s inequality [9], Le Cam’s
method [13], and Assouad’s lemma [4] are the standard tools; see
Yu [17] for a unified treatment.

Label noise models. In the random classification noise (RCN)
model [3], the sample complexity scales as ©(d/(£2(1 — 21)?))
where 7 is the noise rate. Statistical query learning [12] provides
a framework for noise-tolerant learning. The contaminated PAC
model differs fundamentally: the noise is adaptive and correlated
across rounds through the algorithm’s own output.

Robust learning. Huber’s contamination model [11] and recent
work on high-dimensional robust estimation [6] consider adversar-
ial corruption of a fixed fraction of data. Our setting is distinct: the
corruption is neither adversarial nor i.i.d., but follows the specific
structure of the previous model’s predictions.

Model collapse. Shumailov et al. [14] empirically demonstrated
that iterative training on model-generated data leads to perfor-
mance degradation. Dohmatob et al. [7] and Alemohammad et
al. [1] provide theoretical analysis for specific model families. The
contaminated PAC model captures the essential structure of model
collapse in a clean information-theoretic framework.

Information theory. Our channel capacity analysis draws on stan-
dard results from information theory [5]. The connection to locally

Conference’17, July 2017, Washington, DC, USA

private estimation [8] is suggestive: both settings involve informa-
tion bottlenecks that degrade statistical efficiency.

8 DISCUSSION AND OPEN PROBLEMS

Our work establishes the first information-theoretic lower bounds
for generic algorithms in the contaminated PAC model, but leaves
a significant gap between proven lower bounds (Q(d/(nT))) and

known upper bounds (O(\/d/(nT))).

The+/- gap. The core technical challenge is that standard information-

theoretic methods bound the total information linearly in the sam-
ple size, yielding 1/(nT) rates. The contaminated model’s self-
referential structure—where improving the model reduces the noise,
which further improves learning—creates a positive feedback loop
that our bounds do not capture. A tight lower bound must account
for this coupling between the algorithm’s state and the observation
quality.

Evidence for the conjecture. Our simulations provide strong com-
putational evidence for Conjecture 5. The Bayesian optimal learner
(which represents the best possible algorithm up to computational

constraints) achieves errors that scale consistently with 4/d/((1 — a)nT).

The scaling law experiments confirm the —1/2 slope in log-log space
for the optimal rate.

Open problems.

(1) Prove or disprove Conjecture 5: is the tight minimax rate
O(yd/((1 - a)nT))?

(2) Characterize the exact role of « in the minimax rate: is the
(1 — &)~ factor tight, or could it be (1 — 2a)~? as in the
RCN model?

(3) Extend the analysis to non-realizable settings where f* ¢

F.

(4) Develop lower bound techniques that capture the self-referential

noise structure inherent to the contaminated model.

9 CONCLUSION

We presented the first information-theoretic lower bounds on sam-
ple complexity for generic algorithms in the contaminated PAC
learning model. Our three complementary bounds — based on
Fano’s inequality, Le Cam’s method, and channel capacity analysis —
establish that any algorithm requires Q(d/(nT-C(«))) error, where
C(a) = 1-H(a) is the contaminated channel capacity. We identified
a phase transition at « = 1/2 and provided extensive computational

evidence for the conjectured tight rate of ©(+/d/((1 — a)nT)). Clos-

ing the gap between our proven bounds and this conjecture remains
an important open problem that requires new techniques beyond
standard information-theoretic arguments.
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