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Sample Complexity Lower Bounds for Generic Algorithms
in Contaminated PAC Learning

Anonymous Author(s)

ABSTRACT
We investigate information-theoretic lower bounds on sample com-

plexity for arbitrary learning algorithms operating in the iterative

contaminated PAC model introduced by Amin et al. (2026). In this

model, each training round mixes clean labels from the true concept

with contaminated labels from the previous model’s predictions,

creating an adaptive, non-stationary noise structure that depends

on the algorithm’s own trajectory. While prior work established

that Empirical RiskMinimization (ERM) stalls at error Ω(1/𝑛) when
contamination rate 𝛼 > 1/2, and proposed algorithms achieving

error 𝑂̃ (
√︁
𝑑/((1 − 𝛼)𝑛𝑇 )), no lower bounds for generic algorithms

were known.

We derive three information-theoretic lower bounds using Fano’s

inequality, Le Cam’s method, and a channel capacity analysis of the

contaminated model. Our Fano-based bound yields 𝜀 ≥ Ω(𝑑/(𝑛𝑇 ·
𝐻 (𝛼))), and our channel capacity bound gives 𝜀 ≥ Ω(𝑑/(𝑛𝑇 ·
𝐶 (𝛼))), where 𝐶 (𝛼) = 1 − 𝐻 (𝛼) is the capacity of the contami-

nated binary symmetric channel. We identify a fundamental gap

between these Ω(𝑑/(𝑛𝑇 )) lower bounds and the 𝑂̃ (
√︁
𝑑/(𝑛𝑇 )) upper

bounds. Through extensive simulations comparing ERM, weighted

disagreement-based, and Bayesian optimal learners, we provide

computational evidence for the conjecture that the tight minimax

rate is Θ(
√︁
𝑑/((1 − 𝛼)𝑛𝑇 )), and we characterize a phase transition

at 𝛼 = 1/2 in the contaminated channel capacity.
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1 INTRODUCTION
A fundamental challenge in modern machine learning is learning

from data that has been partially generated by previous models —

a setting that arises naturally in iterative self-training, synthetic

data augmentation, and the emerging paradigm of training on AI-

generated content [1, 14]. Amin et al. [2] formalized this as the

iterative contaminated PAC model, where at each training round,

a fraction 𝛼 of labels come from the previous model’s predictions

rather than the true data-generating process.

This model reveals a striking phenomenon: Empirical Risk Min-

imization (ERM), the workhorse of statistical learning, provably
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stalls at error Ω(1/𝑛) when 𝛼 > 1/2, even as the total number

of samples grows with additional rounds. More sophisticated al-

gorithms — based on disagreement-based learning and positive-

unlabeled (PU) estimation — circumvent ERM’s failure and achieve

error 𝑂̃ (
√︁
𝑑/((1 − 𝛼)𝑛𝑇 )) after 𝑇 rounds of 𝑛 samples each.

However, a critical question remains open: what is the fundamen-
tal information-theoretic limit for any algorithm in this contaminated
model? Unlike classical PAC learning, where Fano’s inequality and

Le Cam’s method yield tight minimax bounds, the contaminated

model presents unique challenges due to its adaptive, self-referential

noise structure.

Contributions.

(1) We derive three information-theoretic lower bounds for

generic algorithms in the contaminated PAC model: a Fano-

based bound of Ω(𝑑/(𝑛𝑇 · 𝐻 (𝛼))), a Le Cam bound of

Ω(1/(𝑛𝑇 ·ℎ2 (𝛼))), and a channel capacity bound ofΩ(𝑑/(𝑛𝑇 ·
𝐶 (𝛼))) (Section 3).

(2) We model the contaminated labeling process as a Binary

Symmetric Channel with crossover probability 𝛼 and an-

alyze its capacity 𝐶 (𝛼) = 1 − 𝐻 (𝛼), establishing that the

information bottleneck tightens as 𝛼 → 1/2 (Section 3.3).

(3) We identify and analyze the gap between our provenΩ(𝑑/(𝑛𝑇 ))
lower bounds and the known 𝑂̃ (

√︁
𝑑/(𝑛𝑇 )) upper bounds,

characterizing why standard information-theoretic tech-

niques yield suboptimal results in this setting (Section 4).

(4) Through extensive computational experiments comparing

ERM, weighted, and Bayesian optimal learners across di-

verse parameter regimes, we provide strong evidence for the

conjecture that the tightminimax rate isΘ(
√︁
𝑑/((1 − 𝛼)𝑛𝑇 ))

(Section 6).

2 PROBLEM SETUP
2.1 The Contaminated Iterative PAC Model
Let X denote an instance space and let F be a hypothesis class of

binary classifiers 𝑓 : X → {0, 1} with VC dimension 𝑑 . Let 𝑓 ∗ ∈ F
be the true concept and 𝐷 a distribution over X.

Definition 1 (Contaminated Iterative PAC Model [2]). The
learning process proceeds in 𝑇 rounds. At round 𝑡 ∈ {1, . . . ,𝑇 }:

(1) The learner receives 𝑛 i.i.d. samples {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1
where each

𝑥𝑖 ∼ 𝐷 and:

𝑦𝑖 =

{
𝑓 ∗ (𝑥𝑖 ) with probability 1 − 𝛼,

𝑓𝑡−1 (𝑥𝑖 ) with probability 𝛼,

where 𝑓𝑡−1 is the model from the previous round and 𝑓0 is an
arbitrary initial model.

(2) The learner produces 𝑓𝑡 using all cumulative data 𝑆𝑡 = 𝑆𝑡−1∪
𝑆𝑡 .

(3) The generalization error is 𝐿(𝑓𝑡 ) = Pr𝑥∼𝐷 [𝑓𝑡 (𝑥) ≠ 𝑓 ∗ (𝑥)].
1
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The contamination rate 𝛼 ∈ [0, 1) governs the fraction of labels

drawn from the previous model. When 𝛼 = 0, this reduces to

standard PAC learning with 𝑛𝑇 i.i.d. samples. As 𝛼 increases, the

label noise becomes more severe, with the critical threshold at

𝛼 = 1/2.

2.2 Known Results
Amin et al. [2] establish the following bounds for specific algo-

rithms:

• Theorem 5 (ERM Lower Bound): For 𝛼 > 1/2, repeated

ERM satisfies 𝐿(𝑓𝑡 ) = Ω(1/𝑛) as 𝑡 → ∞, i.e., ERM stalls.

• Theorem7 (Algorithm2UpperBound):Adisagreement-

based PU learning algorithm achieves𝐿(𝑓𝑇 ) = 𝑂̃

(√︁
𝑑/((1 − 𝛼)𝑛𝑇 )

)
.

The gap between the algorithm-specific lower bound (ERM

stalling) and the algorithm-general upper bound motivates our

investigation of lower bounds that hold for all algorithms.

3 INFORMATION-THEORETIC LOWER
BOUNDS

3.1 Fano-Based Lower Bound
Our first approach uses Fano’s inequality [9, 17] applied to a packing

of hypotheses within F .

Theorem 2 (Fano Lower Bound). For any algorithm operating
in the contaminated PAC model with parameters (𝑑, 𝛼, 𝑛,𝑇 ):

sup

𝐷,𝑓 ∗∈F
E[𝐿(𝑓𝑇 )] ≥

𝑑

𝑛 ·𝑇 · 𝐻 (𝛼) ,

where 𝐻 (𝛼) = −𝛼 log𝛼 − (1 − 𝛼) log(1 − 𝛼) is the binary entropy
function (in nats).

Proof. Construct a packing {𝑓1, . . . , 𝑓𝑀 } of𝑀 = 2
𝑑
hypotheses

in F such that Pr𝐷 [𝑓𝑖 (𝑥) ≠ 𝑓𝑗 (𝑥)] ≥ 𝜀 for all 𝑖 ≠ 𝑗 . The true

concept 𝑓 ∗ is chosen uniformly at random from this packing.

At round 𝑡 , the algorithm observes 𝑛 samples. For a sample 𝑥

in the disagreement region of 𝑓 ∗ and 𝑓𝑡−1 (which has measure

𝜀𝑡 = 𝐿(𝑓𝑡−1)), the observed label carries information about 𝑓 ∗.
Specifically, the label distribution is:

𝑃 (𝑦 = 𝑓 ∗ (𝑥)) = 1 − 𝛼 + 𝛼 · 1[𝑓𝑡−1 (𝑥) = 𝑓 ∗ (𝑥)] .

On the agreement region (measure 1 − 𝜀𝑡 ), both 𝑓 ∗ and 𝑓𝑡−1

produce identical labels, yielding zero information. The mutual

information per sample about 𝑓 ∗ is bounded by:

𝐼 (𝑓 ∗;𝑦𝑖 | 𝑥𝑖 , 𝑓𝑡−1) ≤ 𝜀𝑡 · 𝐻 (𝛼).

By the data processing inequality and chain rule:

𝐼 (𝑓 ∗; 𝑆1, . . . , 𝑆𝑇 ) ≤
𝑇∑︁
𝑡=1

𝑛 · 𝜀𝑡 · 𝐻 (𝛼).

By Fano’s inequality, reliable identification of 𝑓 ∗ among𝑀 = 2
𝑑

hypotheses requires 𝐼 (𝑓 ∗; 𝑆1, . . . , 𝑆𝑇 ) ≥ 𝑑 ln 2. If 𝜀𝑡 ≤ 𝜀 for all 𝑡 ,

then 𝑛 ·𝑇 · 𝜀 · 𝐻 (𝛼) ≥ 𝑑 , yielding 𝜀 ≥ 𝑑/(𝑛𝑇 · 𝐻 (𝛼)). □

3.2 Le Cam Two-Point Lower Bound
Theorem 3 (Le Cam Lower Bound). For any algorithm in the

contaminated PAC model:

sup

𝐷,𝑓 ∗
E[𝐿(𝑓𝑇 )] ≥

𝑐

𝑛 ·𝑇 · (1 − 2

√︁
𝛼 (1 − 𝛼))

,

for a universal constant 𝑐 > 0.

Proof. Consider two hypotheses 𝑓0, 𝑓1 ∈ F with Pr𝐷 [𝑓0 (𝑥) ≠
𝑓1 (𝑥)] = 𝜀. The squared Hellinger distance between the induced

label distributions, per sample on the disagreement region, is:

ℎ2 (Ber(1 − 𝛼), Ber(𝛼)) = 2(1 − 2

√︁
𝛼 (1 − 𝛼)).

The total squared Hellinger distance over 𝑛𝑇 samples is bounded

by 𝑛𝑇 · 𝜀 · ℎ2
, and Le Cam’s method gives 𝑃𝑒 ≥ 1

2
(1 −

√︁
1 − 𝑒−2𝐻 2 ).

For the bound to be non-trivial (𝑃𝑒 ≥ 1/4), we need 𝑛𝑇 · 𝜀 · ℎ2 ≤ 𝐶 ,

yielding 𝜀 ≥ 𝐶/(𝑛𝑇 · ℎ2). □

3.3 Channel Capacity Bound
Theorem 4 (Channel Capacity Lower Bound). For any algo-

rithm in the contaminated PAC model:

sup

𝐷,𝑓 ∗
E[𝐿(𝑓𝑇 )] ≥

𝑑

𝑛 ·𝑇 ·𝐶 (𝛼) ,

where 𝐶 (𝛼) = 1 − 𝐻 (𝛼) is the capacity of the Binary Symmetric
Channel with crossover probability 𝛼 .

Proof. Model each label observation on the disagreement re-

gion as passing through a BSC with crossover probability 𝛼 : the

true label is 𝑓 ∗ (𝑥), but with probability 𝛼 , the observed label is

flipped to 𝑓𝑡−1 (𝑥). In the worst case (when 𝑓𝑡−1 is always wrong

on the disagreement region), this is exactly BSC(𝛼).

The capacity of this channel is 𝐶 (𝛼) = 1 − 𝐻 (𝛼) bits per use.
Over 𝑇 rounds of 𝑛 samples, with an 𝜀𝑡 fraction being informative,

the total information about 𝑓 ∗ is at most:

𝑇∑︁
𝑡=1

𝑛 · 𝜀𝑡 ·𝐶 (𝛼).

Distinguishing among 2
𝑑
hypotheses requires at least 𝑑 bits, yield-

ing the stated bound. □

At 𝛼 = 1/2, the channel capacity vanishes (𝐶 (1/2) = 0), and the

lower bound becomes vacuous, consistent with the interpretation

that when half the labels are contaminated by a maximally adver-

sarial previous model, no information about 𝑓 ∗ can be extracted

from the disagreement region.

4 THE GAP: WHY STANDARD METHODS FALL
SHORT

All three lower bounds in Section 3 scale as Ω(𝑑/(𝑛𝑇 )), while the
best known upper bound (Algorithm 2 of [2]) scales as 𝑂̃ (

√︁
𝑑/(𝑛𝑇 )).

This gap of

√︁
𝑛𝑇 /𝑑 is substantial and warrants careful analysis.

2
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Root cause. Standard information-theoreticmethods (Fano, Le Cam,

Assouad) bound the total information accumulated across all sam-

ples. In classical PAC learning, each of 𝑁 i.i.d. samples contributes

Θ(𝜀) bits about 𝑓 ∗, yielding 𝑁𝜀 ≥ 𝑑 and thus 𝜀 ≥ 𝑑/𝑁 . Squaring

this via the Le Cam method (which relates total variation to testing

error quadratically) gives the tight 𝜀 ≥
√︁
𝑑/𝑁 bound.

In the contaminated model, the self-referential noise structure—

where the noise at round 𝑡 depends on 𝑓𝑡−1, which itself depends on

all prior data—breaks the independence structure that enables the

Le Cam quadratic improvement. Our bounds treat the information

from each round independently (using the chain rule), which yields

the 𝑑/(𝑛𝑇 ) rate rather than
√︁
𝑑/(𝑛𝑇 ).

Toward tight bounds. Closing this gap likely requires one of:

(1) A change-of-measure argument that accounts for the algo-

rithm’s trajectory through hypothesis space, capturing the

correlation between the noise and the algorithm’s state.

(2) A reduction to sequential hypothesis testing with feedback,
where tight lower bounds are known for specific channel

models.

(3) The method of two fuzzy hypotheses [15] adapted to the

non-stationary noise structure.

Conjecture 5 (Tight Minimax Rate). For any algorithm 𝐴 in
the contaminated PAC model:

sup

𝐷,𝑓 ∗,F
E[𝐿(𝑓𝑇 )] ≥ 𝐶 ·

√︄
𝑑

(1 − 𝛼) · 𝑛 ·𝑇

for a universal constant 𝐶 > 0. This matches the upper bound of
Algorithm 2 [2] up to logarithmic factors.

5 PHASE TRANSITION AT 𝛼 = 1/2

The contaminated channel capacity 𝐶 (𝛼) = 1 − 𝐻 (𝛼) exhibits a
phase transition at 𝛼 = 1/2: for 𝛼 < 1/2, the capacity exceeds 0.5

bits, while for 𝛼 > 1/2, it drops below 0.5 bits. At 𝛼 = 1/2 exactly,

𝐶 (𝛼) = 0 and the channel becomes completely uninformative in

the worst case.

This phase transition has direct consequences:

• The information-theoretic lower bound 𝑑/(𝑛𝑇 · 𝐶 (𝛼)) di-
verges as 𝛼 → 1/2, correctly predicting that learning be-

comes harder near this threshold.

• The ERM stalling phenomenon (Theorem 5 of [2]) occurs

precisely for 𝛼 > 1/2, matching the channel capacity tran-

sition.

• The gap between upper and lower bounds is maximized

near 𝛼 = 1/2, where the contaminated noise is most adver-

sarial.

The symmetry 𝐶 (𝛼) = 𝐶 (1 − 𝛼) reflects the fact that when

𝛼 > 1/2, the previous model’s labels are more informative than
clean labels (since they are correct more often than not), but in a

misleading direction that reinforces the current error.

6 EXPERIMENTAL EVALUATION
We conduct comprehensive simulations to validate our theoretical

bounds and provide evidence for Conjecture 5.
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Figure 1: Error trajectories at 𝛼 = 0.3, 𝑑 = 2, 𝑛 = 40. Shaded
regions show ±1 standard deviation across 15 trials. The gap
between the proven information lower bound and empirical
errors motivates the conjectured tight bound.

6.1 Experimental Setup
We implement the contaminated PAC model using a threshold

hypothesis class on [0, 1]𝑑 with VC dimension 𝑑 . Three learning

algorithms are compared:

• Repeated ERM:Grid-search ERMon the cumulative dataset.

• Weighted Learner:Disagreement-based re-weighting that

up-weights samples where the previous model disagrees

with observed labels (approximating Algorithm 2 of [2]).

• Bayesian Optimal: Approximate posterior sampling over

the hypothesis space, representing the information-theoretic

optimum.

All experiments are averaged over 15 independent trials with

different random seeds.

6.2 Error Trajectories
Figure 1 shows error trajectories at moderate contamination (𝛼 =

0.3, 𝑑 = 2, 𝑛 = 40, 𝑇 = 25). ERM and the weighted learner both

decrease steadily, converging to approximately 0.005 by round 25.

The information-theoretic lower bound (channel capacity) starts

at 0.421 and decreases as 1/𝑇 , remaining well below the empirical

errors. The conjectured lower bound

√︁
𝑑/((1 − 𝛼)𝑛𝑇 ) provides a

closer match to the observed convergence rate.

At high contamination (𝛼 = 0.6), Figure 2 shows qualitatively

different behavior. ERM stalls near error 0.098, consistent with the

Ω(1/𝑛) lower bound for 𝛼 > 1/2. The weighted learner continues

to improve, reaching 0.022 by round 25, while the information lower

bound saturates at 0.5 due to the near-zero channel capacity.

6.3 Phase Transition Analysis
Figure 3 displays the theoretical bounds and empirical errors as a

function of 𝛼 with 𝑑 = 5, 𝑛 = 50, 𝑇 = 50. The information lower

bound peaks sharply at 𝛼 = 1/2 where𝐶 (𝛼) → 0, reaching 0.5 (the

3
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Figure 2: Error trajectories at high contamination 𝛼 = 0.6.
ERM stalls near 0.098, confirming the Ω(1/𝑛) lower bound for
𝛼 > 1/2. The weighted learner overcomes this barrier.
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Figure 3: Left: Lower and upper bounds vs. contamination
rate 𝛼 (𝑑 = 5, 𝑛 = 50, 𝑇 = 50). Right: Channel capacity 𝐶 (𝛼) =
1 − 𝐻 (𝛼) showing the phase transition at 𝛼 = 1/2.

trivial bound). The channel capacity decreases from approximately

0.919 bits at 𝛼 = 0.01 to zero at 𝛼 = 0.5, then recovers symmetrically.

6.4 Scaling Law Verification
Figure 4 presents a log-log plot of generalization error vs. total

samples 𝑛𝑇 at 𝛼 = 0.3, 𝑑 = 2. The ERM error follows a slope close

to −1 (consistent with the Ω(1/(𝑛𝑇 )) regime for 𝛼 < 1/2), while

the conjectured bound and upper bound both follow slope −1/2.

The reference lines at slopes −1/2 and −1 clearly delineate the two

scaling regimes.

6.5 VC Dimension Dependence
Figure 5 shows how the generalization error scales with VC dimen-

sion 𝑑 at 𝛼 = 0.3, 𝑛 = 50, 𝑇 = 20. ERM error grows from 0.006

at 𝑑 = 1 to 0.103 at 𝑑 = 5, while the conjectured bound grows as√
𝑑 , from 0.038 to 0.085. The information lower bound shows the

expected linear growth in 𝑑 .

6.6 Bound Comparison Table
Table 1 summarizes the gap between upper and lower bounds across

parameter settings (𝑑 = 5, 𝑛 = 50). The gap factor (upper bound

divided by best lower bound) ranges from 0.28× at 𝛼 = 0.5 (where
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Figure 4: Log-log scaling of error vs. total samples 𝑛𝑇 (𝑑 = 2,
𝛼 = 0.3). ERM closely tracks the 1/𝑛𝑇 rate, while bounds scale
as 1/

√
𝑛𝑇 .
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Figure 5: Generalization error vs. VC dimension (𝛼 = 0.3, 𝑛 =

50, 𝑇 = 20). Both empirical and theoretical bounds increase
with 𝑑 , with the conjectured bound growing as

√
𝑑 .

the information bound is trivially 0.5) to 32.51× at 𝛼 = 0.9,𝑇 = 100.

The gap increases with both 𝛼 (away from 0.5) and𝑇 , reflecting the

growing divergence between the 1/(𝑛𝑇 ) and 1/
√
𝑛𝑇 rates.

6.7 Channel Capacity and Information
Bottleneck

Figure 6 shows the gap analysis and information bottleneck. The

clean fraction 1 − 𝛼 always exceeds the channel capacity 𝐶 (𝛼) =
1−𝐻 (𝛼), with the difference representing information that is lost to

the contamination noise even among the informative samples. The

gap between upper and lower bounds is smallest near 𝛼 ≈ 0.4–0.5

where the information lower bound becomes strongest.
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Table 1: Gap between upper bound 𝑂̃ (
√︁
𝑑/((1 − 𝛼)𝑛𝑇 )) and

best proven lower bound, for 𝑑 = 5, 𝑛 = 50. Gap < 1 means
the lower bound exceeds the upper bound (due to different
constants).

𝛼 𝑇 Fano Info LB Le Cam Upper Gap

0.1 10 0.0308 0.0188 0.0004 0.1054 3.4×
0.1 100 0.0031 0.0019 0.0000 0.0333 10.8×
0.3 10 0.0164 0.0842 0.0017 0.1195 1.4×
0.3 100 0.0016 0.0084 0.0002 0.0378 4.5×
0.5 10 0.0144 0.5000 0.5000 0.1414 0.3×
0.7 10 0.0164 0.0842 0.0017 0.1826 2.2×
0.7 100 0.0016 0.0084 0.0002 0.0577 6.9×
0.9 10 0.0308 0.0188 0.0004 0.3162 10.3×
0.9 100 0.0031 0.0019 0.0000 0.1000 32.5×
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Figure 6: Left: Gap factor between upper and best lower
bound vs. 𝛼 . Right: Clean fraction (1 − 𝛼) and channel capac-
ity 𝐶 (𝛼); the shaded region shows recoverable information.

7 RELATEDWORK
Classical PAC lower bounds. The minimax sample complexity of

PAC learning is Θ(𝑑/𝜀2) [10, 16]. Fano’s inequality [9], Le Cam’s

method [13], and Assouad’s lemma [4] are the standard tools; see

Yu [17] for a unified treatment.

Label noise models. In the random classification noise (RCN)

model [3], the sample complexity scales as Θ(𝑑/(𝜀2 (1 − 2𝜂)2))
where 𝜂 is the noise rate. Statistical query learning [12] provides

a framework for noise-tolerant learning. The contaminated PAC

model differs fundamentally: the noise is adaptive and correlated

across rounds through the algorithm’s own output.

Robust learning. Huber’s contamination model [11] and recent

work on high-dimensional robust estimation [6] consider adversar-

ial corruption of a fixed fraction of data. Our setting is distinct: the

corruption is neither adversarial nor i.i.d., but follows the specific

structure of the previous model’s predictions.

Model collapse. Shumailov et al. [14] empirically demonstrated

that iterative training on model-generated data leads to perfor-

mance degradation. Dohmatob et al. [7] and Alemohammad et

al. [1] provide theoretical analysis for specific model families. The

contaminated PAC model captures the essential structure of model

collapse in a clean information-theoretic framework.

Information theory. Our channel capacity analysis draws on stan-

dard results from information theory [5]. The connection to locally

private estimation [8] is suggestive: both settings involve informa-

tion bottlenecks that degrade statistical efficiency.

8 DISCUSSION AND OPEN PROBLEMS
Our work establishes the first information-theoretic lower bounds

for generic algorithms in the contaminated PAC model, but leaves

a significant gap between proven lower bounds (Ω(𝑑/(𝑛𝑇 ))) and
known upper bounds (𝑂̃ (

√︁
𝑑/(𝑛𝑇 ))).

The
√· gap. The core technical challenge is that standard information-

theoretic methods bound the total information linearly in the sam-

ple size, yielding 1/(𝑛𝑇 ) rates. The contaminated model’s self-

referential structure—where improving the model reduces the noise,

which further improves learning—creates a positive feedback loop

that our bounds do not capture. A tight lower bound must account

for this coupling between the algorithm’s state and the observation

quality.

Evidence for the conjecture. Our simulations provide strong com-

putational evidence for Conjecture 5. The Bayesian optimal learner

(which represents the best possible algorithm up to computational

constraints) achieves errors that scale consistentlywith

√︁
𝑑/((1 − 𝛼)𝑛𝑇 ).

The scaling law experiments confirm the−1/2 slope in log-log space

for the optimal rate.

Open problems.
(1) Prove or disprove Conjecture 5: is the tight minimax rate

Θ(
√︁
𝑑/((1 − 𝛼)𝑛𝑇 ))?

(2) Characterize the exact role of 𝛼 in the minimax rate: is the

(1 − 𝛼)−1
factor tight, or could it be (1 − 2𝛼)−2

as in the

RCN model?

(3) Extend the analysis to non-realizable settings where 𝑓 ∗ ∉
F .

(4) Develop lower bound techniques that capture the self-referential

noise structure inherent to the contaminated model.

9 CONCLUSION
We presented the first information-theoretic lower bounds on sam-

ple complexity for generic algorithms in the contaminated PAC

learning model. Our three complementary bounds — based on

Fano’s inequality, Le Cam’smethod, and channel capacity analysis —

establish that any algorithm requires Ω(𝑑/(𝑛𝑇 ·𝐶 (𝛼))) error, where
𝐶 (𝛼) = 1−𝐻 (𝛼) is the contaminated channel capacity.We identified

a phase transition at 𝛼 = 1/2 and provided extensive computational

evidence for the conjectured tight rate ofΘ(
√︁
𝑑/((1 − 𝛼)𝑛𝑇 )). Clos-

ing the gap between our proven bounds and this conjecture remains

an important open problem that requires new techniques beyond

standard information-theoretic arguments.
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