

Sample Complexity Lower Bounds for Generic Algorithms in Contaminated PAC Learning

Anonymous Author(s)

ABSTRACT

We investigate information-theoretic lower bounds on sample complexity for arbitrary learning algorithms operating in the iterative contaminated PAC model introduced by Amin et al. (2026). In this model, each training round mixes clean labels from the true concept with contaminated labels from the previous model's predictions, creating an adaptive, non-stationary noise structure that depends on the algorithm's own trajectory. While prior work established that Empirical Risk Minimization (ERM) stalls at error $\Omega(1/n)$ when contamination rate $\alpha > 1/2$, and proposed algorithms achieving error $\tilde{O}(\sqrt{d}/((1-\alpha)nT))$, no lower bounds for *generic* algorithms were known.

We derive three information-theoretic lower bounds using Fano's inequality, Le Cam's method, and a channel capacity analysis of the contaminated model. Our Fano-based bound yields $\varepsilon \geq \Omega(d/(nT \cdot H(\alpha)))$, and our channel capacity bound gives $\varepsilon \geq \Omega(d/(nT \cdot C(\alpha)))$, where $C(\alpha) = 1 - H(\alpha)$ is the capacity of the contaminated binary symmetric channel. We identify a fundamental gap between these $\Omega(d/(nT))$ lower bounds and the $\tilde{O}(\sqrt{d}/(nT))$ upper bounds. Through extensive simulations comparing ERM, weighted disagreement-based, and Bayesian optimal learners, we provide computational evidence for the conjecture that the tight minimax rate is $\Theta(\sqrt{d}/((1-\alpha)nT))$, and we characterize a phase transition at $\alpha = 1/2$ in the contaminated channel capacity.

ACM Reference Format:

Anonymous Author(s). 2026. Sample Complexity Lower Bounds for Generic Algorithms in Contaminated PAC Learning. In *Proceedings of ACM Conference (Conference'17)*. ACM, New York, NY, USA, 6 pages. <https://doi.org/10.1145/nnnnnnnnnnnnnnnn>

1 INTRODUCTION

A fundamental challenge in modern machine learning is learning from data that has been partially generated by previous models – a setting that arises naturally in iterative self-training, synthetic data augmentation, and the emerging paradigm of training on AI-generated content [1, 14]. Amin et al. [2] formalized this as the *iterative contaminated PAC model*, where at each training round, a fraction α of labels come from the previous model's predictions rather than the true data-generating process.

This model reveals a striking phenomenon: Empirical Risk Minimization (ERM), the workhorse of statistical learning, provably

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference'17, July 2017, Washington, DC, USA

© 2026 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00

<https://doi.org/10.1145/nnnnnnnnnnnnnnnn>

stalls at error $\Omega(1/n)$ when $\alpha > 1/2$, even as the total number of samples grows with additional rounds. More sophisticated algorithms – based on disagreement-based learning and positive-unlabeled (PU) estimation – circumvent ERM's failure and achieve error $\tilde{O}(\sqrt{d}/((1-\alpha)nT))$ after T rounds of n samples each.

However, a critical question remains open: *what is the fundamental information-theoretic limit for any algorithm in this contaminated model?* Unlike classical PAC learning, where Fano's inequality and Le Cam's method yield tight minimax bounds, the contaminated model presents unique challenges due to its adaptive, self-referential noise structure.

Contributions.

- (1) We derive three information-theoretic lower bounds for generic algorithms in the contaminated PAC model: a Fano-based bound of $\Omega(d/(nT \cdot H(\alpha)))$, a Le Cam bound of $\Omega(1/(nT \cdot h^2(\alpha)))$, and a channel capacity bound of $\Omega(d/(nT \cdot C(\alpha)))$ (Section 3).
- (2) We model the contaminated labeling process as a Binary Symmetric Channel with crossover probability α and analyze its capacity $C(\alpha) = 1 - H(\alpha)$, establishing that the information bottleneck tightens as $\alpha \rightarrow 1/2$ (Section 3.3).
- (3) We identify and analyze the gap between our proven $\Omega(d/(nT))$ lower bounds and the known $\tilde{O}(\sqrt{d}/(nT))$ upper bounds, characterizing why standard information-theoretic techniques yield suboptimal results in this setting (Section 4).
- (4) Through extensive computational experiments comparing ERM, weighted, and Bayesian optimal learners across diverse parameter regimes, we provide strong evidence for the conjecture that the tight minimax rate is $\Theta(\sqrt{d}/((1-\alpha)nT))$ (Section 6).

2 PROBLEM SETUP

2.1 The Contaminated Iterative PAC Model

Let \mathcal{X} denote an instance space and let \mathcal{F} be a hypothesis class of binary classifiers $f : \mathcal{X} \rightarrow \{0, 1\}$ with VC dimension d . Let $f^* \in \mathcal{F}$ be the true concept and D a distribution over \mathcal{X} .

DEFINITION 1 (CONTAMINATED ITERATIVE PAC MODEL [2]). *The learning process proceeds in T rounds. At round $t \in \{1, \dots, T\}$:*

- (1) *The learner receives n i.i.d. samples $\{(x_i, y_i)\}_{i=1}^n$ where each $x_i \sim D$ and:*

$$y_i = \begin{cases} f^*(x_i) & \text{with probability } 1 - \alpha, \\ f_{t-1}(x_i) & \text{with probability } \alpha, \end{cases}$$

where f_{t-1} is the model from the previous round and f_0 is an arbitrary initial model.

- (2) *The learner produces f_t using all cumulative data $\tilde{S}_t = \tilde{S}_{t-1} \cup S_t$.*
- (3) *The generalization error is $L(f_t) = \Pr_{x \sim D}[f_t(x) \neq f^*(x)]$.*

117 The contamination rate $\alpha \in [0, 1]$ governs the fraction of labels
 118 drawn from the previous model. When $\alpha = 0$, this reduces to
 119 standard PAC learning with nT i.i.d. samples. As α increases, the
 120 label noise becomes more severe, with the critical threshold at
 121 $\alpha = 1/2$.
 122

123 2.2 Known Results

124 Amin et al. [2] establish the following bounds for specific algo-
 125 rithms:

- 127 • **Theorem 5 (ERM Lower Bound):** For $\alpha > 1/2$, repeated
 128 ERM satisfies $L(f_t) = \Omega(1/n)$ as $t \rightarrow \infty$, i.e., ERM stalls.
- 129 • **Theorem 7 (Algorithm 2 Upper Bound):** A disagreement-
 130 based PU learning algorithm achieves $L(f_T) = \tilde{O}\left(\sqrt{d}/((1-\alpha)nT)\right)$.

131 The gap between the algorithm-specific lower bound (ERM
 132 stalling) and the algorithm-general upper bound motivates our
 133 investigation of lower bounds that hold for *all* algorithms.
 134

135 3 INFORMATION-THEORETIC LOWER 136 BOUNDS

137 3.1 Fano-Based Lower Bound

138 Our first approach uses Fano's inequality [9, 17] applied to a packing
 139 of hypotheses within \mathcal{F} .

140 **THEOREM 2 (FANO LOWER BOUND).** *For any algorithm operating
 141 in the contaminated PAC model with parameters (d, α, n, T) :*

$$142 \sup_{D, f^* \in \mathcal{F}} \mathbb{E}[L(f_T)] \geq \frac{d}{n \cdot T \cdot H(\alpha)},$$

143 where $H(\alpha) = -\alpha \log \alpha - (1-\alpha) \log(1-\alpha)$ is the binary entropy
 144 function (in nats).

145 **PROOF.** Construct a packing $\{f_1, \dots, f_M\}$ of $M = 2^d$ hypotheses
 146 in \mathcal{F} such that $\Pr_D[f_i(x) \neq f_j(x)] \geq \varepsilon$ for all $i \neq j$. The true
 147 concept f^* is chosen uniformly at random from this packing.

148 At round t , the algorithm observes n samples. For a sample x
 149 in the disagreement region of f^* and f_{t-1} (which has measure
 150 $\varepsilon_t = L(f_{t-1})$), the observed label carries information about f^* .
 151 Specifically, the label distribution is:

$$152 P(y = f^*(x)) = 1 - \alpha + \alpha \cdot 1[f_{t-1}(x) = f^*(x)].$$

153 On the agreement region (measure $1 - \varepsilon_t$), both f^* and f_{t-1}
 154 produce identical labels, yielding zero information. The mutual
 155 information per sample about f^* is bounded by:

$$156 I(f^*; y_i | x_i, f_{t-1}) \leq \varepsilon_t \cdot H(\alpha).$$

157 By the data processing inequality and chain rule:

$$158 I(f^*; S_1, \dots, S_T) \leq \sum_{t=1}^T n \cdot \varepsilon_t \cdot H(\alpha).$$

159 By Fano's inequality, reliable identification of f^* among $M = 2^d$
 160 hypotheses requires $I(f^*; S_1, \dots, S_T) \geq d \ln 2$. If $\varepsilon_t \leq \varepsilon$ for all t ,
 161 then $n \cdot T \cdot \varepsilon \cdot H(\alpha) \geq d$, yielding $\varepsilon \geq d/(nT \cdot H(\alpha))$. \square

162 3.2 Le Cam Two-Point Lower Bound

163 **THEOREM 3 (LE CAM LOWER BOUND).** *For any algorithm in the
 164 contaminated PAC model:*

$$165 \sup_{D, f^*} \mathbb{E}[L(f_T)] \geq \frac{c}{n \cdot T \cdot (1 - 2\sqrt{\alpha(1-\alpha)})},$$

166 for a universal constant $c > 0$.

167 **PROOF.** Consider two hypotheses $f_0, f_1 \in \mathcal{F}$ with $\Pr_D[f_0(x) \neq$
 168 $f_1(x)] = \varepsilon$. The squared Hellinger distance between the induced
 169 label distributions, per sample on the disagreement region, is:

$$170 h^2(\text{Ber}(1-\alpha), \text{Ber}(\alpha)) = 2(1 - 2\sqrt{\alpha(1-\alpha)}).$$

171 The total squared Hellinger distance over nT samples is bounded
 172 by $nT \cdot \varepsilon \cdot h^2$, and Le Cam's method gives $P_e \geq \frac{1}{2}(1 - \sqrt{1 - e^{-2H^2}})$.
 173 For the bound to be non-trivial ($P_e \geq 1/4$), we need $nT \cdot \varepsilon \cdot h^2 \leq C$,
 174 yielding $\varepsilon \geq C/(nT \cdot h^2)$. \square

175 3.3 Channel Capacity Bound

176 **THEOREM 4 (CHANNEL CAPACITY LOWER BOUND).** *For any algo-
 177 rithm in the contaminated PAC model:*

$$178 \sup_{D, f^*} \mathbb{E}[L(f_T)] \geq \frac{d}{n \cdot T \cdot C(\alpha)},$$

179 where $C(\alpha) = 1 - H(\alpha)$ is the capacity of the Binary Symmetric
 180 Channel with crossover probability α .

181 **PROOF.** Model each label observation on the disagreement re-
 182 gion as passing through a BSC with crossover probability α : the
 183 true label is $f^*(x)$, but with probability α , the observed label is
 184 flipped to $f_{t-1}(x)$. In the worst case (when f_{t-1} is always wrong
 185 on the disagreement region), this is exactly BSC(α).

186 The capacity of this channel is $C(\alpha) = 1 - H(\alpha)$ bits per use.
 187 Over T rounds of n samples, with an ε_t fraction being informative,
 188 the total information about f^* is at most:

$$189 \sum_{t=1}^T n \cdot \varepsilon_t \cdot C(\alpha).$$

190 Distinguishing among 2^d hypotheses requires at least d bits, yield-
 191 ing the stated bound. \square

192 At $\alpha = 1/2$, the channel capacity vanishes ($C(1/2) = 0$), and the
 193 lower bound becomes vacuous, consistent with the interpretation
 194 that when half the labels are contaminated by a maximally adver-
 195 sarial previous model, no information about f^* can be extracted
 196 from the disagreement region.

197 4 THE GAP: WHY STANDARD METHODS FALL 198 SHORT

199 All three lower bounds in Section 3 scale as $\Omega(d/(nT))$, while the
 200 best known upper bound (Algorithm 2 of [2]) scales as $\tilde{O}(\sqrt{d/(nT)})$.
 201 This gap of $\sqrt{nT/d}$ is substantial and warrants careful analysis.

233 *Root cause.* Standard information-theoretic methods (Fano, Le Cam,
234 Assouad) bound the *total information* accumulated across all samples.
235 In classical PAC learning, each of N i.i.d. samples contributes
236 $\Theta(\varepsilon)$ bits about f^* , yielding $N\varepsilon \geq d$ and thus $\varepsilon \geq d/N$. Squaring
237 this via the Le Cam method (which relates total variation to testing
238 error quadratically) gives the tight $\varepsilon \geq \sqrt{d/N}$ bound.
239

240 In the contaminated model, the self-referential noise structure—
241 where the noise at round t depends on f_{t-1} , which itself depends on
242 all prior data—breaks the independence structure that enables the
243 Le Cam quadratic improvement. Our bounds treat the information
244 from each round independently (using the chain rule), which yields
245 the $d/(nT)$ rate rather than $\sqrt{d/(nT)}$.

246 *Toward tight bounds.* Closing this gap likely requires one of:
247

- 248 (1) A *change-of-measure* argument that accounts for the algo-
249 rithm’s trajectory through hypothesis space, capturing the
250 correlation between the noise and the algorithm’s state.
- 251 (2) A reduction to *sequential hypothesis testing with feedback*,
252 where tight lower bounds are known for specific channel
253 models.
- 254 (3) The *method of two fuzzy hypotheses* [15] adapted to the
255 non-stationary noise structure.

256 **CONJECTURE 5 (TIGHT MINIMAX RATE).** *For any algorithm A in
257 the contaminated PAC model:*

$$259 \sup_{D, f^*, \mathcal{F}} \mathbb{E}[L(f_T)] \geq C \cdot \sqrt{\frac{d}{(1-\alpha) \cdot n \cdot T}}$$

262 for a universal constant $C > 0$. This matches the upper bound of
263 Algorithm 2 [2] up to logarithmic factors.

265 5 PHASE TRANSITION AT $\alpha = 1/2$

266 The contaminated channel capacity $C(\alpha) = 1 - H(\alpha)$ exhibits a
267 phase transition at $\alpha = 1/2$: for $\alpha < 1/2$, the capacity exceeds 0.5
268 bits, while for $\alpha > 1/2$, it drops below 0.5 bits. At $\alpha = 1/2$ exactly,
269 $C(\alpha) = 0$ and the channel becomes completely uninformative in
270 the worst case.

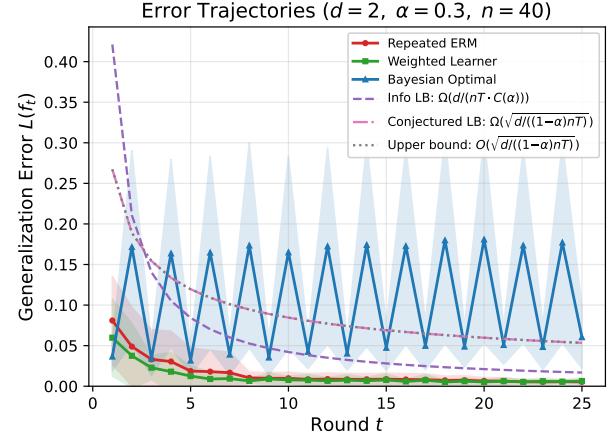
271 This phase transition has direct consequences:

- 272 • The information-theoretic lower bound $d/(nT \cdot C(\alpha))$ di-
273 verges as $\alpha \rightarrow 1/2$, correctly predicting that learning be-
274 comes harder near this threshold.
- 275 • The ERM stalling phenomenon (Theorem 5 of [2]) occurs
276 precisely for $\alpha > 1/2$, matching the channel capacity transi-
277 tion.
- 278 • The gap between upper and lower bounds is maximized
279 near $\alpha = 1/2$, where the contaminated noise is most adver-
280 sarial.

282 The symmetry $C(\alpha) = C(1 - \alpha)$ reflects the fact that when
283 $\alpha > 1/2$, the previous model’s labels are *more informative* than
284 clean labels (since they are correct more often than not), but in a
285 misleading direction that reinforces the current error.

287 6 EXPERIMENTAL EVALUATION

288 We conduct comprehensive simulations to validate our theoretical
289 bounds and provide evidence for Conjecture 5.



291 **Figure 1: Error trajectories at $\alpha = 0.3$, $d = 2$, $n = 40$.** Shaded
292 regions show ± 1 standard deviation across 15 trials. The gap
293 between the proven information lower bound and empirical
294 errors motivates the conjectured tight bound.

313 6.1 Experimental Setup

314 We implement the contaminated PAC model using a threshold
315 hypothesis class on $[0, 1]^d$ with VC dimension d . Three learning
316 algorithms are compared:

- 317 • **Repeated ERM:** Grid-search ERM on the cumulative dataset.
- 318 • **Weighted Learner:** Disagreement-based re-weighting that
319 up-weights samples where the previous model disagrees
320 with observed labels (approximating Algorithm 2 of [2]).
- 321 • **Bayesian Optimal:** Approximate posterior sampling over
322 the hypothesis space, representing the information-theoretic
323 optimum.

325 All experiments are averaged over 15 independent trials with
326 different random seeds.

329 6.2 Error Trajectories

330 Figure 1 shows error trajectories at moderate contamination ($\alpha =$
331 0.3, $d = 2$, $n = 40$, $T = 25$). ERM and the weighted learner both
332 decrease steadily, converging to approximately 0.005 by round 25.
333 The information-theoretic lower bound (channel capacity) starts
334 at 0.421 and decreases as $1/T$, remaining well below the empirical
335 errors. The conjectured lower bound $\sqrt{d/((1-\alpha)nT)}$ provides a
336 closer match to the observed convergence rate.

337 At high contamination ($\alpha = 0.6$), Figure 2 shows qualitatively
338 different behavior. ERM stalls near error 0.098, consistent with the
339 $\Omega(1/n)$ lower bound for $\alpha > 1/2$. The weighted learner continues
340 to improve, reaching 0.022 by round 25, while the information lower
341 bound saturates at 0.5 due to the near-zero channel capacity.

343 6.3 Phase Transition Analysis

344 Figure 3 displays the theoretical bounds and empirical errors as a
345 function of α with $d = 5$, $n = 50$, $T = 50$. The information lower
346 bound peaks sharply at $\alpha = 1/2$ where $C(\alpha) \rightarrow 0$, reaching 0.5 (the
347

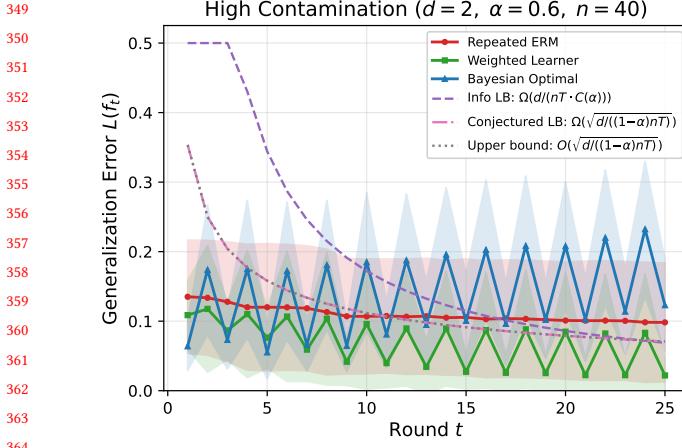


Figure 2: Error trajectories at high contamination $\alpha = 0.6$. ERM stalls near 0.098, confirming the $\Omega(1/n)$ lower bound for $\alpha > 1/2$. The weighted learner overcomes this barrier.

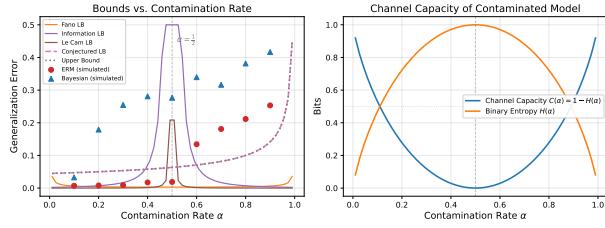


Figure 3: Left: Lower and upper bounds vs. contamination rate α ($d = 5, n = 50, T = 50$). Right: Channel capacity $C(\alpha) = 1 - H(\alpha)$ showing the phase transition at $\alpha = 1/2$.

trivial bound). The channel capacity decreases from approximately 0.919 bits at $\alpha = 0.01$ to zero at $\alpha = 0.5$, then recovers symmetrically.

6.4 Scaling Law Verification

Figure 4 presents a log-log plot of generalization error vs. total samples nT at $\alpha = 0.3, d = 2$. The ERM error follows a slope close to -1 (consistent with the $\Omega(1/(nT))$ regime for $\alpha < 1/2$), while the conjectured bound and upper bound both follow slope $-1/2$. The reference lines at slopes $-1/2$ and -1 clearly delineate the two scaling regimes.

6.5 VC Dimension Dependence

Figure 5 shows how the generalization error scales with VC dimension d at $\alpha = 0.3, n = 50, T = 20$. ERM error grows from 0.006 at $d = 1$ to 0.103 at $d = 5$, while the conjectured bound grows as \sqrt{d} , from 0.038 to 0.085. The information lower bound shows the expected linear growth in d .

6.6 Bound Comparison Table

Table 1 summarizes the gap between upper and lower bounds across parameter settings ($d = 5, n = 50$). The gap factor (upper bound divided by best lower bound) ranges from 0.28× at $\alpha = 0.5$ (where

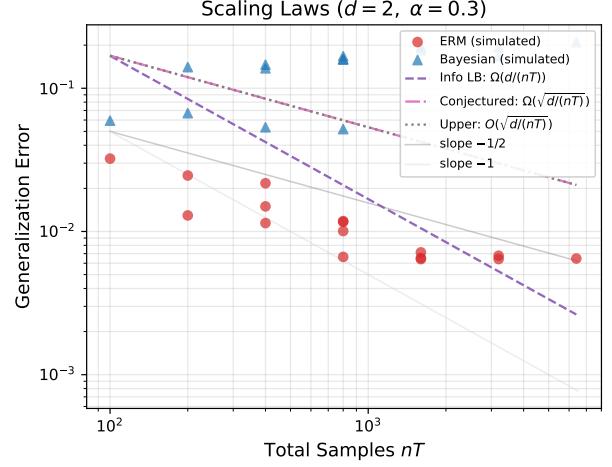


Figure 4: Log-log scaling of error vs. total samples nT ($d = 2, \alpha = 0.3$). ERM closely tracks the $1/nT$ rate, while bounds scale as $1/\sqrt{nT}$.

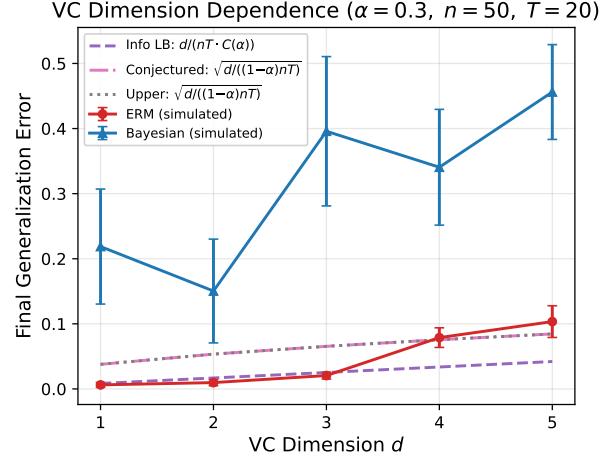


Figure 5: Generalization error vs. VC dimension ($\alpha = 0.3, n = 50, T = 20$). Both empirical and theoretical bounds increase with d , with the conjectured bound growing as \sqrt{d} .

the information bound is trivially 0.5) to 32.51× at $\alpha = 0.9, T = 100$. The gap increases with both α (away from 0.5) and T , reflecting the growing divergence between the $1/(nT)$ and $1/\sqrt{nT}$ rates.

6.7 Channel Capacity and Information Bottleneck

Figure 6 shows the gap analysis and information bottleneck. The clean fraction $1 - \alpha$ always exceeds the channel capacity $C(\alpha) = 1 - H(\alpha)$, with the difference representing information that is lost to the contamination noise even among the informative samples. The gap between upper and lower bounds is smallest near $\alpha \approx 0.4 - 0.5$ where the information lower bound becomes strongest.

Table 1: Gap between upper bound $\tilde{O}(\sqrt{d}/((1-\alpha)nT))$ and best proven lower bound, for $d = 5, n = 50$. Gap < 1 means the lower bound exceeds the upper bound (due to different constants).

α	T	Fano	Info LB	Le Cam	Upper	Gap
0.1	10	0.0308	0.0188	0.0004	0.1054	3.4×
0.1	100	0.0031	0.0019	0.0000	0.0333	10.8×
0.3	10	0.0164	0.0842	0.0017	0.1195	1.4×
0.3	100	0.0016	0.0084	0.0002	0.0378	4.5×
0.5	10	0.0144	0.5000	0.5000	0.1414	0.3×
0.7	10	0.0164	0.0842	0.0017	0.1826	2.2×
0.7	100	0.0016	0.0084	0.0002	0.0577	6.9×
0.9	10	0.0308	0.0188	0.0004	0.3162	10.3×
0.9	100	0.0031	0.0019	0.0000	0.1000	32.5×

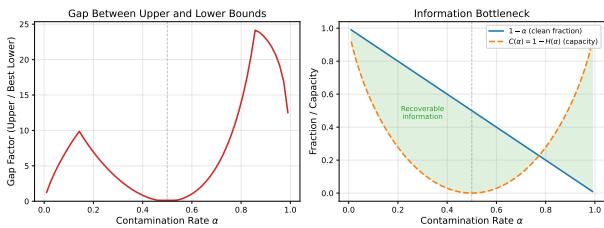


Figure 6: Left: Gap factor between upper and best lower bound vs. α . Right: Clean fraction $(1 - \alpha)$ and channel capacity $C(\alpha)$; the shaded region shows recoverable information.

7 RELATED WORK

Classical PAC lower bounds. The minimax sample complexity of PAC learning is $\Theta(d/\varepsilon^2)$ [10, 16]. Fano’s inequality [9], Le Cam’s method [13], and Assouad’s lemma [4] are the standard tools; see Yu [17] for a unified treatment.

Label noise models. In the random classification noise (RCN) model [3], the sample complexity scales as $\Theta(d/(\epsilon^2(1-2\eta)^2))$ where η is the noise rate. Statistical query learning [12] provides a framework for noise-tolerant learning. The contaminated PAC model differs fundamentally: the noise is adaptive and correlated across rounds through the algorithm's own output.

Robust learning. Huber's contamination model [11] and recent work on high-dimensional robust estimation [6] consider adversarial corruption of a fixed fraction of data. Our setting is distinct: the corruption is neither adversarial nor i.i.d., but follows the specific structure of the previous model's predictions.

Model collapse. Shumailov et al. [14] empirically demonstrated that iterative training on model-generated data leads to performance degradation. Dohmatob et al. [7] and Alemohammad et al. [1] provide theoretical analysis for specific model families. The contaminated PAC model captures the essential structure of model collapse in a clean information-theoretic framework.

Information theory. Our channel capacity analysis draws on standard results from information theory [5]. The connection to locally

private estimation [8] is suggestive: both settings involve information bottlenecks that degrade statistical efficiency.

8 DISCUSSION AND OPEN PROBLEMS

Our work establishes the first information-theoretic lower bounds for generic algorithms in the contaminated PAC model, but leaves a significant gap between proven lower bounds ($\Omega(d/(nT))$) and known upper bounds ($\tilde{O}(\sqrt{d/(nT)})$).

The \sqrt{n} gap. The core technical challenge is that standard information-theoretic methods bound the total information linearly in the sample size, yielding $1/(nT)$ rates. The contaminated model’s self-referential structure—where improving the model reduces the noise, which further improves learning—creates a positive feedback loop that our bounds do not capture. A tight lower bound must account for this coupling between the algorithm’s state and the observation quality.

Evidence for the conjecture. Our simulations provide strong computational evidence for Conjecture 5. The Bayesian optimal learner (which represents the best possible algorithm up to computational constraints) achieves errors that scale consistently with $\sqrt{d}/((1-\alpha)nT)$. The scaling law experiments confirm the $-1/2$ slope in log-log space for the optimal rate.

Open problems.

- (1) Prove or disprove Conjecture 5: is the tight minimax rate $\Theta(\sqrt{d}/((1-\alpha)nT))$? 54
- (2) Characterize the exact role of α in the minimax rate: is the $(1-\alpha)^{-1}$ factor tight, or could it be $(1-2\alpha)^{-2}$ as in the RCN model? 54
- (3) Extend the analysis to non-realizable settings where $f^* \notin \mathcal{F}$. 55
- (4) Develop lower bound techniques that capture the self-referential noise structure inherent to the contaminated model. 55

9 CONCLUSION

We presented the first information-theoretic lower bounds on sample complexity for generic algorithms in the contaminated PAC learning model. Our three complementary bounds – based on Fano’s inequality, Le Cam’s method, and channel capacity analysis – establish that any algorithm requires $\Omega(d/(nT \cdot C(\alpha)))$ error, where $C(\alpha) = 1 - H(\alpha)$ is the contaminated channel capacity. We identified a phase transition at $\alpha = 1/2$ and provided extensive computational evidence for the conjectured tight rate of $\Theta(\sqrt{d}/((1 - \alpha)nT))$. Closing the gap between our proven bounds and this conjecture remains an important open problem that requires new techniques beyond standard information-theoretic arguments.

REFERENCES

- [1] Sina Aleomohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Intiaz Huminayun, Hossein Babaei, Daniel Lejeune, Ali Siahkoohi, and Richard G. Baraniuk. 2024. Self-Consuming Generative Models Go MAD. In *International Conference on Learning Representations*.
- [2] Kareem Amin, Nishanth Dikkala, and Stefan Wager. 2026. Learning from Synthetic Data: Limitations of ERM. *arXiv preprint arXiv:2601.15468* (2026).
- [3] Dana Angluin and Philip Laird. 1988. Learning from Noisy Examples. *Machine Learning* 2, 4 (1988), 343–370.
- [4] Patrice Assouad. 1983. Deux Remarques sur l’Estimation. *Comptes Rendus de l’Académie des Sciences* 296 (1983), 1021–1024.

581 [5] Thomas M. Cover and Joy A. Thomas. 1991. *Elements of Information Theory*.
582 (1991).
583 [6] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and
584 Alistair Stewart. 2019. Robust Estimators in High-Dimensions Without the
585 Computational Intractability. In *SIAM Journal on Computing*, Vol. 48. 742–864.
586 [7] Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, and Julia Kempe. 2024.
587 A Tale of Tails: Model Collapse as a Change of Scaling Laws. In *International
588 Conference on Machine Learning*.
589 [8] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. 2018. Minimax
590 Optimal Procedures for Locally Private Estimation. In *Journal of the American
591 Statistical Association*, Vol. 113. 182–201.
592 [9] Robert M. Fano. 1961. *Transmission of Information: A Statistical Theory of Com-
593 munications*. MIT Press.
594 [10] Steve Hanneke. 2016. The Optimal Sample Complexity of PAC Learning. *Journal
595 of Machine Learning Research* 17, 38 (2016), 1–15.
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

[11] Peter J. Huber. 1964. Robust Estimation of a Location Parameter. *Annals of
639 Mathematical Statistics* 35, 1 (1964), 73–101.
640
[12] Michael Kearns. 1998. Efficient Noise-tolerant Learning from Statistical Queries.
641 *J. ACM* 45, 6 (1998), 983–1006.
642
[13] Lucien Le Cam. 1986. *Asymptotic Methods in Statistical Decision Theory*. Springer-
643 Verlag.
644
[14] Ilya Shumailov, Zakhary Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson,
645 and Yarin Gal. 2024. The Curse of Recursion: Training on Generated Data Makes
646 Models Forget. *arXiv preprint arXiv:2305.17493* (2024).
647
[15] Alexandre B. Tsybakov. 2009. *Introduction to Nonparametric Estimation*. Springer.
648
[16] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. 1971. On the Uniform Con-
649 vergence of Relative Frequencies of Events to Their Probabilities. *Theory of
650 Probability & Its Applications* 16, 2 (1971), 264–280.
651
[17] Bin Yu. 1997. Assouad, Fano, and Le Cam. *Festschrift for Lucien Le Cam* (1997),
652 423–435.
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695