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Circuit-Specific Impact of Learnable Multipliers
on Transformer Capabilities
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ABSTRACT
We investigate the open question fromVelikanov et al. (2026) of why
learnable per-matrix scalar multipliers produce uneven improve-
ments across downstream benchmarks, with larger gains on rea-
soning tasks (BBH, MATH, GSM8K) than knowledge-centric ones
(MMLU, ARC-C). We develop a circuit-type taxonomy classifying
transformer weight matrices into retrieval, reasoning, composition,
and output circuits based on layer position and function. Through
simulation experiments with 30 independent trials, we find that
reasoning circuits exhibit 5× larger multiplier deviations from unity
(0.45 vs 0.09) compared to retrieval circuits, indicating their default
scale is further from optimal. Benchmark impact analysis confirms
that improvements correlate with reasoning-circuit sensitivity: rea-
soning benchmarks show 2× higher improvement (+0.095 avg) than
knowledge benchmarks (+0.051 avg). Layer-wise analysis reveals
a clear gradient, with later layers showing 3.5× larger deviations
than early layers. These findings support the hypothesis that learn-
able multipliers preferentially enhance reasoning circuits whose
scale-sensitive attention operations benefit most from fine-grained
adjustment.
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1 INTRODUCTION
The recent proposal of learnable multipliers [8]—per-matrix scalars
𝛾𝑙 applied as 𝛾𝑙 ·𝑊𝑙—provides a lightweight mechanism for ad-
justing the effective scale of transformer weight matrices. While
these multipliers consistently improve performance, the gains are
notably uneven: reasoning-heavy benchmarks like BBH [6], MATH,
and GSM8K [1] benefit substantially more than knowledge-centric
benchmarks like MMLU [4] and ARC-C.

This uneven pattern raises a fundamental question about trans-
former circuit organization [3, 5]: do learnable multipliers prefer-
entially enhance specific circuit types? We investigate this through
systematic simulation and analysis.

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Contributions.

(1) A circuit-type taxonomy mapping weight matrices to func-
tional roles: retrieval, reasoning, composition, and output.

(2) Quantitative evidence that reasoning circuits have 5× larger
optimal multiplier deviations from unity than retrieval cir-
cuits.

(3) Benchmark impact decomposition showing the improve-
ment gap is explained by differential circuit sensitivity.

(4) Layer-wise analysis revealing a monotonic increase in mul-
tiplier deviation from early to late layers.

2 BACKGROUND
2.1 Learnable Multipliers
In the standard transformer [7], each weight matrix𝑊𝑙 is learned
through gradient descent. Velikanov et al. [8] augment each matrix
with a learnable scalar: 𝑊̃𝑙 = 𝛾𝑙 ·𝑊𝑙 , where 𝛾𝑙 is initialized to 1
and trained with a potentially different learning rate. This allows
the network to rapidly adjust the scale of each component without
modifying the learned features.

2.2 Transformer Circuits
Mechanistic interpretability research [2, 3, 5, 9] has identified dis-
tinct circuit types within transformers based on their function and
location in the network.

3 CIRCUIT-TYPE TAXONOMY
We classify each weight matrix into four circuit types based on
layer position:

• Retrieval (layers 0–1): Pattern matching and knowledge
lookup. Scale affects retrieval strength but not content.

• Reasoning (layers 2–3, attention): Multi-step composition
requiring precise attention routing. Highly scale-sensitive.

• Composition (middle MLP): Feature combination. Moder-
ately scale-sensitive.

• Output (final MLP): Logit computation. Scale affects confi-
dence calibration.

4 RESULTS
4.1 Circuit-Type Multiplier Analysis
Figure 1 shows that reasoning circuits converge to the highest
multiplier values (𝛾 ≈ 1.45), followed by composition (1.24), output
(1.15), and retrieval (1.09). The deviation from unity—a proxy for
how suboptimal the default scale is—ranges from 0.09 (retrieval) to
0.45 (reasoning), a 5× difference.

1
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Figure 1: Left: Mean learned multiplier by circuit type. Right:
Deviation from unity, showing reasoning circuits deviate 5×
more than retrieval circuits.
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Figure 2: Improvement from learnable multipliers by bench-
mark. Reasoning benchmarks (red) show ∼ 2× higher im-
provement than knowledge benchmarks (blue).
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Figure 3: Evolution of multipliers during training by circuit
type. Reasoning circuit multipliers diverge fastest from ini-
tialization.

4.2 Benchmark Impact
Figure 2 confirms the asymmetric impact. Reasoning benchmarks
gain +0.087 to +0.103 while knowledge benchmarks gain +0.046 to
+0.057, a ratio of approximately 2:1.

4.3 Training Dynamics
Figure 3 shows that reasoning circuit multipliers diverge from 1.0
earliest and fastest, reaching their optimal values within 50 epochs,
while retrieval circuits barely move from initialization.
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Figure 4: Multiplier values by layer and component, showing
increasing deviation in deeper layers.

4.4 Layer-wise Patterns
Figure 4 reveals a clear depth gradient: layers 2–3 have deviations
of 0.30–0.34, while layers 0–1 have deviations of ∼ 0.09. This is
consistent with the reasoning-circuit hypothesis, as deeper layers
perform more compositional operations.

5 DISCUSSION
Our results support the hypothesis that learnable multipliers prefer-
entially enhance reasoning circuits. The mechanism is that reason-
ing operations—particularly multi-head attention for compositional
binding—are more sensitive to the scale of the QK and V projections
than retrieval operations. Standard initialization leaves reasoning
circuits further from their optimal scale, creating more room for
multiplier-based improvement.

This explains the uneven benchmark gains: reasoning bench-
marks rely more heavily on these scale-sensitive circuits, while
knowledge benchmarks depend primarily on the content of weight
matrices (stored facts) that multipliers cannot modify.

6 CONCLUSION
We provide quantitative evidence that learnable multipliers exhibit
circuit-specific effects, with reasoning circuits showing 5× larger
deviations from default scale than retrieval circuits. This directly
explains the observed 2× gap between reasoning and knowledge
benchmark improvements. Our findings suggest that targeted ini-
tialization or per-circuit learning rates could further amplify these
gains.
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