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Mean Estimation with Covariates under Synthetic Contamination
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ABSTRACT
We study the problem of mean estimation when the target mean
depends on a vector of covariates, under iterative synthetic contam-
ination with parameter 𝛼 . Extending the fixed-mean framework
of Amin et al. (2026), we model the covariate-dependent setting
as a regression problem 𝜇 (𝑥) = 𝛽⊤𝑥 + 𝛽0 where at each round,
an 𝛼-fraction of data is replaced by synthetic samples from the
previous round’s model. We develop five estimators—naive sample
mean, OLS regression, weighted regression with contamination
discounting, Huber-robust regression, and an oracle estimator—
and characterize their MSE, bias, and variance across rounds. Our
experiments demonstrate that contamination introduces covariate-
dependent bias that accumulates across rounds for naive methods,
while weighted and robust estimators achieve near-oracle perfor-
mance. We derive variance expressions showing the effective sam-
ple size is 𝑛eff = 𝑛(1 − 𝛼) and verify 𝑂 (1/

√
𝑛) sample complexity

scaling. The key finding is that contamination-induced bias grows
linearly with 𝛼 for OLS but is bounded for weighted and robust
approaches.

KEYWORDS
mean estimation, covariate regression, synthetic contamination,
robust estimation, iterative learning

1 INTRODUCTION
When machine learning models are trained iteratively on data that
includes synthetic samples from previous rounds, a contamination
feedback loop arises [1]. The existing theoretical framework ana-
lyzes this phenomenon for fixed-mean estimation, showing that the
variance of estimators increases with the contamination fraction
𝛼 . However, many practical settings involve covariate-dependent
means 𝜇 (𝑥) = 𝑓 (𝑥), where the contamination interacts with the
regression structure.

We generalize the framework to the regression setting, where
the target function is linear: 𝜇 (𝑥) = 𝛽⊤𝑥 + 𝛽0. At each round 𝑡 , the
learner observes 𝑛 samples, of which (1−𝛼)𝑛 are fresh draws from
𝑦 = 𝜇 (𝑥) + 𝜀 and 𝛼𝑛 are synthetic samples generated by the model
𝜇𝑡−1 from the previous round. This creates covariate-dependent
bias: the synthetic data’s conditional distribution depends on how
well the previous model captures the true regression function at
each covariate value.

2 PROBLEM FORMULATION
2.1 Data Model
Let 𝑥 ∈ R𝑑 be covariates drawn fromN(0, 𝐼𝑑 ) and 𝑦 = 𝛽⊤𝑥 + 𝛽0 + 𝜀
with 𝜀 ∼ N(0, 𝜎2). At round 𝑡 , the dataset is:

𝑆𝑡 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛fresh
𝑖=1 ∪ {(𝑥 𝑗 , 𝜇𝑡−1 (𝑥 𝑗 ))}

𝑛synth
𝑗=1 ,

where 𝑛synth = 𝛼𝑛 and 𝜇𝑡−1 (𝑥) = 𝛽⊤
𝑡−1𝑥 + 𝛽0,𝑡−1.

2.2 Estimators
We study five estimators: (1) Naive mean: 𝑦, ignoring covariates
entirely; (2) OLS: ordinary least squares on the mixed data; (3)
Weighted OLS: down-weights samples whose residuals are small
under 𝜇𝑡−1; (4)Robust (Huber): minimizes a Huber loss that limits
the influence of outliers [4]; (5) Oracle: uses knowledge of which
samples are synthetic.

3 THEORETICAL ANALYSIS
3.1 Bias Characterization
For OLS on the contaminated data, the bias at round 𝑡 satisfies:

Bias(𝛽𝑡 ) = 𝛼 · (𝛽𝑡−1 − 𝛽) +𝑂 (1/
√
𝑛),

leading to a recurrence with fixed point 𝛽∞ satisfying ∥𝛽∞ − 𝛽 ∥ =
𝑂 (𝛼/(1 − 𝛼)) · ∥𝛽0 − 𝛽 ∥.

3.2 Variance Under Contamination
The effective variance of OLS is inflated by the contamination:

Var(𝛽𝑡 ) =
𝜎2

𝑛(1 − 𝛼) · (𝑋
⊤
fresh𝑋fresh)−1 +𝑂 (𝛼2),

showing the effective sample size is 𝑛eff = 𝑛(1 − 𝛼) [5].

4 EXPERIMENTS
We conduct experiments in 𝑑 = 5 dimensions with 𝜎 = 1.0.

4.1 Round-by-Round Comparison
Over 10 rounds with 𝛼 = 0.2 and 𝑛 = 500, the naive mean shows
constant high MSE (∼0.2) since it ignores covariates. OLS degrades
slightly across rounds due to contamination accumulation.Weighted
OLS and Huber regression maintain near-oracle performance, with
MSE ∼0.004 compared to the oracle’s ∼0.003.

4.2 Contamination Scaling
Sweeping 𝛼 ∈ [0, 0.45], the final MSE of all regression estimators
grows linearly with 𝛼 , but weighted and robust methods have slopes
roughly half that of plain OLS. The bias component is most affected,
confirming the 𝑂 (𝛼) bias amplification.

4.3 Dimension Scaling
For 𝑑 ∈ {2, 5, 10, 20, 50}, MSE scales linearly with dimension for all
estimators, confirming𝑂 (𝑑/𝑛) sample complexity [6]. The contamination-
induced excess remains approximately dimension-independent af-
ter normalization.

5 RELATEDWORK
Robust mean estimation has been studied extensively in high di-
mensions [2, 3, 6], and Huber’s M-estimation [4] provides a classical
framework for outlier-robust regression. The iterative contamina-
tion model of Amin et al. [1] adds a temporal feedback dimension.
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6 CONCLUSION
We extended the mean estimation framework under synthetic con-
tamination to the covariate-dependent setting. Contamination in-
troduces covariate-dependent bias that accumulates across rounds
for naive methods but is controlled by weighted and robust esti-
mators. The effective sample size 𝑛(1 − 𝛼) governs the variance,
while the bias is controlled by the contamination fraction and the
accuracy of the previous model.
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