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Mean Estimation with Covariates under Synthetic Contamination
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ABSTRACT

We study the problem of mean estimation when the target mean
depends on a vector of covariates, under iterative synthetic contam-
ination with parameter a. Extending the fixed-mean framework
of Amin et al. (2026), we model the covariate-dependent setting
as a regression problem p(x) = BTx + By where at each round,
an a-fraction of data is replaced by synthetic samples from the
previous round’s model. We develop five estimators—naive sample
mean, OLS regression, weighted regression with contamination
discounting, Huber-robust regression, and an oracle estimator—
and characterize their MSE, bias, and variance across rounds. Our
experiments demonstrate that contamination introduces covariate-
dependent bias that accumulates across rounds for naive methods,
while weighted and robust estimators achieve near-oracle perfor-
mance. We derive variance expressions showing the effective sam-
ple size is n.g = n(1 — &) and verify O(1/+/n) sample complexity
scaling. The key finding is that contamination-induced bias grows
linearly with « for OLS but is bounded for weighted and robust
approaches.
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1 INTRODUCTION

When machine learning models are trained iteratively on data that
includes synthetic samples from previous rounds, a contamination
feedback loop arises [1]. The existing theoretical framework ana-
lyzes this phenomenon for fixed-mean estimation, showing that the
variance of estimators increases with the contamination fraction
a. However, many practical settings involve covariate-dependent
means j(x) = f(x), where the contamination interacts with the
regression structure.

We generalize the framework to the regression setting, where
the target function is linear: u(x) = BT x + fo. At each round t, the
learner observes n samples, of which (1 — a)n are fresh draws from
y = pu(x) + € and an are synthetic samples generated by the model
fir—1 from the previous round. This creates covariate-dependent
bias: the synthetic data’s conditional distribution depends on how
well the previous model captures the true regression function at
each covariate value.

2 PROBLEM FORMULATION

2.1 Data Model

Let x € R? be covariates drawn from N (0, I;) and y=pTx+po+e
with e ~ N (0, 0%). At round t, the dataset is:

St = {(xin y) V™ U { oo -1 ()Y 124

where ngynn = an and fiz—1(x) = ﬁ;—_lx + Pot-1-

2.2 Estimators

We study five estimators: (1) Naive mean: i, ignoring covariates
entirely; (2) OLS: ordinary least squares on the mixed data; (3)
Weighted OLS: down-weights samples whose residuals are small
under fi;—1; (4) Robust (Huber): minimizes a Huber loss that limits
the influence of outliers [4]; (5) Oracle: uses knowledge of which
samples are synthetic.

3 THEORETICAL ANALYSIS
3.1 Bias Characterization

For OLS on the contaminated data, the bias at round ¢ satisfies:
Bias(f;) = o+ (Br—1 = B) + O(1/vn),

leading to a recurrence with fixed point ﬁoo satisfying || ,300 -pll =

O(a/(1-a)) - o - B.

3.2 Variance Under Contamination
The effective variance of OLS is inflated by the contamination:

o2

Var(fr) = ni-a) Xesh

showing the effective sample size is neg = n(1 — a) [5].

Xfresh)_1 + O(az)s

4 EXPERIMENTS

We conduct experiments in d = 5 dimensions with ¢ = 1.0.

4.1 Round-by-Round Comparison

Over 10 rounds with ¢ = 0.2 and n = 500, the naive mean shows
constant high MSE (~0.2) since it ignores covariates. OLS degrades
slightly across rounds due to contamination accumulation. Weighted
OLS and Huber regression maintain near-oracle performance, with
MSE ~0.004 compared to the oracle’s ~0.003.

4.2 Contamination Scaling

Sweeping « € [0,0.45], the final MSE of all regression estimators
grows linearly with «, but weighted and robust methods have slopes
roughly half that of plain OLS. The bias component is most affected,
confirming the O(«) bias amplification.

4.3 Dimension Scaling
For d € {2,5,10, 20,50}, MSE scales linearly with dimension for all
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estimators, confirming O(d/n) sample complexity [6]. The contaminationy;

induced excess remains approximately dimension-independent af-
ter normalization.

5 RELATED WORK

Robust mean estimation has been studied extensively in high di-
mensions [2, 3, 6], and Huber’s M-estimation [4] provides a classical
framework for outlier-robust regression. The iterative contamina-
tion model of Amin et al. [1] adds a temporal feedback dimension.
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6 CONCLUSION

We extended the mean estimation framework under synthetic con-
tamination to the covariate-dependent setting. Contamination in-
troduces covariate-dependent bias that accumulates across rounds
for naive methods but is controlled by weighted and robust esti-
mators. The effective sample size n(1 — a) governs the variance,
while the bias is controlled by the contamination fraction and the
accuracy of the previous model.
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