

1 Mean Estimation with Covariates under Synthetic Contamination 59

2 Anonymous Author(s) 60

3 ABSTRACT 61

4 We study the problem of mean estimation when the target mean 62 depends on a vector of covariates, under iterative synthetic contamination 63 with parameter α . Extending the fixed-mean framework 64 of Amin et al. (2026), we model the covariate-dependent setting 65 as a regression problem $\mu(x) = \beta^\top x + \beta_0$ where at each round, 66 an α -fraction of data is replaced by synthetic samples from the 67 previous round’s model. We develop five estimators—naive sample 68 mean, OLS regression, weighted regression with contamination 69 discounting, Huber-robust regression, and an oracle estimator—and 70 characterize their MSE, bias, and variance across rounds. Our 71 experiments demonstrate that contamination introduces covariate- 72 dependent bias that accumulates across rounds for naive methods, 73 while weighted and robust estimators achieve near-oracle performance. 74 We derive variance expressions showing the effective sample 75 size is $n_{\text{eff}} = n(1 - \alpha)$ and verify $O(1/\sqrt{n})$ sample complexity 76 scaling. The key finding is that contamination-induced bias grows 77 linearly with α for OLS but is bounded for weighted and robust 78 approaches. 79

25 KEYWORDS 80

26 mean estimation, covariate regression, synthetic contamination, 81 robust estimation, iterative learning 82

30 1 INTRODUCTION 83

31 When machine learning models are trained iteratively on data that 84 includes synthetic samples from previous rounds, a contamination 85 feedback loop arises [1]. The existing theoretical framework 86 analyzes this phenomenon for fixed-mean estimation, showing that the 87 variance of estimators increases with the contamination fraction 88 α . However, many practical settings involve covariate-dependent 89 means $\mu(x) = f(x)$, where the contamination interacts with the 90 regression structure. 91

92 We generalize the framework to the regression setting, where 93 the target function is linear: $\mu(x) = \beta^\top x + \beta_0$. At each round t , the 94 learner observes n samples, of which $(1 - \alpha)n$ are fresh draws from 95 $y = \mu(x) + \varepsilon$ and αn are synthetic samples generated by the model 96 $\hat{\mu}_{t-1}$ from the previous round. This creates covariate-dependent 97 bias: the synthetic data’s conditional distribution depends on how 98 well the previous model captures the true regression function at 99 each covariate value. 100

49 2 PROBLEM FORMULATION 101

50 2.1 Data Model 102

51 Let $x \in \mathbb{R}^d$ be covariates drawn from $\mathcal{N}(0, I_d)$ and $y = \beta^\top x + \beta_0 + \varepsilon$ 52 with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. At round t , the dataset is: 53

$$54 S_t = \{(x_i, y_i)\}_{i=1}^{n_{\text{fresh}}} \cup \{(x_j, \hat{\mu}_{t-1}(x_j))\}_{j=1}^{n_{\text{synth}}},$$

55 where $n_{\text{synth}} = \alpha n$ and $\hat{\mu}_{t-1}(x) = \hat{\beta}_{t-1}^\top x + \hat{\beta}_{0,t-1}$. 56

57 2.2 Estimators 63

58 We study five estimators: (1) **Naive mean**: \hat{y} , ignoring covariates 59 entirely; (2) **OLS**: ordinary least squares on the mixed data; (3) 60 **Weighted OLS**: down-weights samples whose residuals are small 61 under $\hat{\mu}_{t-1}$; (4) **Robust (Huber)**: minimizes a Huber loss that limits 62 the influence of outliers [4]; (5) **Oracle**: uses knowledge of which 63 samples are synthetic. 64

65 3 THEORETICAL ANALYSIS 71

66 3.1 Bias Characterization 72

67 For OLS on the contaminated data, the bias at round t satisfies: 74

$$68 \text{Bias}(\hat{\beta}_t) = \alpha \cdot (\hat{\beta}_{t-1} - \beta) + O(1/\sqrt{n}),$$

69 leading to a recurrence with fixed point $\hat{\beta}_\infty$ satisfying $\|\hat{\beta}_\infty - \beta\| = 70 O(\alpha/(1 - \alpha)) \cdot \|\hat{\beta}_0 - \beta\|$. 71

72 3.2 Variance Under Contamination 80

73 The effective variance of OLS is inflated by the contamination: 81

$$74 \text{Var}(\hat{\beta}_t) = \frac{\sigma^2}{n(1 - \alpha)} \cdot (X_{\text{fresh}}^\top X_{\text{fresh}})^{-1} + O(\alpha^2),$$

75 showing the effective sample size is $n_{\text{eff}} = n(1 - \alpha)$ [5]. 82

76 4 EXPERIMENTS 87

77 We conduct experiments in $d = 5$ dimensions with $\sigma = 1.0$. 88

79 4.1 Round-by-Round Comparison 91

80 Over 10 rounds with $\alpha = 0.2$ and $n = 500$, the naive mean shows 81 constant high MSE (~ 0.2) since it ignores covariates. OLS degrades 82 slightly across rounds due to contamination accumulation. Weighted 83 OLS and Huber regression maintain near-oracle performance, with 84 MSE ~ 0.004 compared to the oracle’s ~ 0.003 . 85

86 4.2 Contamination Scaling 98

87 Sweeping $\alpha \in [0, 0.45]$, the final MSE of all regression estimators 88 grows linearly with α , but weighted and robust methods have slopes 89 roughly half that of plain OLS. The bias component is most affected, 90 confirming the $O(\alpha)$ bias amplification. 91

92 4.3 Dimension Scaling 98

93 For $d \in \{2, 5, 10, 20, 50\}$, MSE scales linearly with dimension for all 94 estimators, confirming $O(d/n)$ sample complexity [6]. The contamination 95 induced excess remains approximately dimension-independent after 96 normalization. 97

98 5 RELATED WORK 110

99 Robust mean estimation has been studied extensively in high 100 dimensions [2, 3, 6], and Huber’s M-estimation [4] provides a classical 101 framework for outlier-robust regression. The iterative contamination 102 model of Amin et al. [1] adds a temporal feedback dimension. 103

117 6 CONCLUSION

118 We extended the mean estimation framework under synthetic con-
 119 tamination to the covariate-dependent setting. Contamination in-
 120 troduces covariate-dependent bias that accumulates across rounds
 121 for naive methods but is controlled by weighted and robust esti-
 122 mators. The effective sample size $n(1 - \alpha)$ governs the variance,
 123 while the bias is controlled by the contamination fraction and the
 124 accuracy of the previous model.

125 REFERENCES

127 [1] Kareem Amin, Hassan Ashtiani, Edgar Dobriban, Moein Kesavan, and Songbai
 128 Li. 2026. Learning from Synthetic Data: Limitations of ERM. *arXiv preprint*

129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174

175 [2] Olivier Catoni. 2012. Challenging the Empirical Mean and Empirical Variance: A
 176 Deviation Study. *Annales de l'Institut Henri Poincaré, Probabilités et Statistiques* 48,
 177 4 (2012), 1148–1185.

178 [3] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and
 179 Alistair Stewart. 2019. Robust Estimators in High-Dimensions without the Com-
 180 putational Intractability. *SIAM J. Comput.* 48, 2 (2019), 742–864.

181 [4] Peter J Huber. 1964. Robust Estimation of a Location Parameter. *Annals of
 182 Mathematical Statistics* 35, 1 (1964), 73–101.

183 [5] Erich L Lehmann and George Casella. 1998. *Theory of Point Estimation* (2nd ed.).
 184 Springer.

185 [6] Gábor Lugosi and Shahar Mendelson. 2019. Mean Estimation and Regression
 186 Under Heavy-Tailed Distributions: A Survey. *Foundations of Computational Math-
 187 ematics* 19, 5 (2019), 1145–1190.

188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232