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ABSTRACT

We construct a minimal mathematical model that simultaneously
exhibits the noise-dominated regime for matrix parameters and the
signal-dominated regime for scalar/vector parameters observed dur-
ing language model training. Our model, L(W, y) = ||y @ (Wx) — y||?
trained with AdamW, demonstrates that matrix parameters W
reach a noise-weight decay equilibrium while scalar multipliers
y track the optimization signal freely. The key mechanism is the
dimensionality-dependent signal-to-noise ratio (SNR): matrix gra-
dients spread signal across O(d?) parameters while accumulating
0(d?) noise dimensions, yielding low per-parameter SNR, whereas
scalar parameters concentrate signal in O(d) dimensions with pro-
portionally less noise. We validate this through experiments varying
batch size, weight decay, and dimension, showing that the SNR gap
between parameter types grows with dimension and that batch
size controls the regime transition. This minimal model explains
when and why learnable multipliers escape the noise-constrained
equilibrium that limits matrix parameters.

KEYWORDS

training dynamics, weight decay, noise equilibrium, signal-to-noise
ratio, learnable multipliers

1 INTRODUCTION

During language model training with AdamW [2, 3], matrix param-
eters and scalar/vector parameters exhibit qualitatively different dy-
namical behaviors [6]. Matrix weights converge to a noise-weight
decay (noise-WD) equilibrium where their Frobenius norm is con-
strained by the balance between gradient noise and regularization,
while learnable scalar multipliers freely adapt their scale based on
the optimization signal.

Understanding this dichotomy is important for scaling laws [1],
hyperparameter transfer [7], and the deployment of architectural
innovations like learnable multipliers [6]. We construct a minimal
model that captures both regimes and identify the dimensionality-
dependent signal-to-noise ratio as the key mechanism.

2 THE MINIMAL MODEL

Consider the loss:
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where W € R is a matrix parameter, y € R? is a scalar multi-
plier (per output dimension), and {(x;, y;)} are training data. Both
parameters are updated via AdamW:
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Figure 1: Training dynamics showing noise-dominated W
(stable norm) and signal-dominated gamma (evolving norm),
with corresponding SNR trajectories.

2.1 SNR Analysis

The mini-batch gradient for W has signal (full-batch gradient)
spread across d? entries and noise from sampling B out of N points.
The per-parameter SNR scales as:
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When SNRy, < 1 (noise-dominated regime), weight decay con-
strains ||W||f to an equilibrium. When SNRy, > SNRyy, y operates
in a signal-dominated regime.

SNRyy ~

3 RESULTS

3.1 Two-Regime Dynamics

Figure 1 shows the training dynamics with d = 10, = 0.01, A =
0.01, B = 16. Matrix norm ||W||f reaches equilibrium quickly while
[yl evolves monotonically. The SNR ratio (gamma/W) exceeds 5x
throughout training.

3.2 Batch Size (Noise Level)

Figure 2 shows that increasing batch size increases both SNRs,
with y’s SNR growing faster. At B = 256, even W approaches the
signal-dominated regime, consistent with the critical batch size
framework [4, 5].

3.3 Weight Decay Sweep

Figure 3 demonstrates that weight decay constrains ||W||f strongly
in the noise-dominated regime but has a weaker relative effect on



Equilibrium Norms vs Noise Level SNR vs Batch Size
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Figure 2: Equilibrium norms and SNR as functions of batch
size. Larger batches push W toward the signal-dominated
regime.

Norms vs Weight Decay Loss vs Weight Decay
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Figure 3: Parameter norms and loss as functions of weight
decay. WD constrains noise-dominated W more than signal-
dominated gamma.

SNR vs Dimension Regime Separation vs Dimension
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Figure 4: SNR and regime separation as functions of dimen-
sion d. The gap grows with dimensionality.

lyll. Without weight decay (A = 0), both parameters grow freely,
eliminating the regime separation.

3.4 Dimension Scaling

Figure 4 confirms that the SNR gap between W and y grows with
dimension d, as predicted by the d? vs. d scaling. The SNR ratio
increases roughly linearly with d.

4 DISCUSSION

Our minimal model explains the key empirical observation: matrix
parameters are noise-dominated because their gradient signal is di-
luted across O(d?) parameters, while scalar multipliers concentrate
signal in fewer parameters. Weight decay then constrains the noise-
dominated parameters to an equilibrium, while signal-dominated
parameters evolve freely. This mechanism predicts that: (1) the

Anon.

regime separation increases with model dimension, (2) larger batch
sizes reduce the separation, and (3) weight decay is necessary for
the two-regime behavior.

5 CONCLUSION

We have constructed a minimal model L(W, y) = ||y ® (Wx) — y||?
that simultaneously exhibits both training regimes observed in lan-
guage models. The dimensionality-dependent SNR explains why
matrix parameters enter a noise-WD equilibrium while scalar mul-
tipliers remain signal-dominated. This model provides mechanistic
understanding for the deployment of learnable multipliers and sug-
gests that regime-aware hyperparameter tuning (separate learning
rates and weight decay for different parameter types) is theoreti-
cally justified.
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