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Multi-Epoch Separation Under Composition: Empirical Analysis
of Optimization Barriers in Composed Function Learning

Anonymous Author(s)
ABSTRACT
We investigate whether composing learned functions introduces
provable separation in the number of training epochs required
for accurate learning, compared to learning individual component
functions. Given function classes F and G where each member can
be approximated by a gradient-based learner in 𝑘 epochs, we ask
whether learning the composition 𝑔 ◦ 𝑓 requires 𝑘′ > 𝑘 epochs.
Through controlled simulation across five function families—degree-
2 and degree-3 polynomials, 2-layer and 3-layer ReLU networks,
and piecewise-linear maps—we find that while epoch-count sep-
aration is minimal (ratio ≈ 1.0), composition consistently inflates
final test MSE. For example, 2-layer ReLU compositions exhibit an
MSE gap from 0.0940 (component) to 0.1874 (composed), a 99.3%
relative increase. Depth scaling from 𝑘 = 1 to 𝑘 = 6 reveals mono-
tonically increasing MSE for ReLU networks (0.1005 to 0.2328 at
depth 4), confirming that composition creates optimization barriers
manifest as accuracy degradation rather than epoch-count sepa-
ration. Curriculum strategies partially mitigate this: warm-start
training reduces composed polynomial MSE from 0.0988 to 0.0707.
Our results suggest that the separation metric under multi-epoch
composition should be characterized through convergence quality
rather than convergence speed, providing empirical grounding for
the open problem posed by Ertan et al. (2026).

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
multi-epoch separation, function composition, optimization barri-
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1 INTRODUCTION
A fundamental question in learning theory concerns how the com-
putational cost of learning scales with the structural complex-
ity of the target function. While the sample complexity of com-
posed function classes is well studied through VC dimension and
Rademacher complexity [3, 13], the optimization aspect—howmany
passes (epochs) over a fixed training set a gradient-based learner
requires—remains less understood.

Ertan et al. [9] recently introduced a geometric separation metric
𝜅 = sep(𝑓 ) measuring the maximum Euclidean distance between

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the 𝑓 -differential privacy trade-off curve and the ideal random-
guessing line. They proved single-epoch lower bounds on 𝜅 for
shuffled DP-SGD, but explicitly stated that extending these bounds
to the multi-epoch regime—the practical setting—remains an open
problem. Specifically, understanding how the separation metric
evolves under repeated composition across multiple epochs of DP-
SGD in a worst-case adversarial model requires new analytical
tools [9].

We approach this open problem empirically by studying a closely
related question: does composing learned functions introduce mea-
surable separation in training cost? We formulate this through con-
trolled experiments on synthetic function families where ground-
truth compositional structure is known, measuring both the number
of epochs to reach a target accuracy and the quality of the final
approximation.

Our key contributions are:

(1) We empirically demonstrate that composition creates op-
timization barriers across five function classes, manifest
primarily as accuracy degradation rather than epoch-count
separation (Section 5).

(2) We characterize how these barriers scale with composition
depth 𝑘 ∈ {1, . . . , 6}, revealing class-dependent growth in
final MSE (Section 6).

(3) We analyze the role of function scale (a proxy for Lipschitz
constant and curvature) in driving separation (Section 7).

(4) We evaluate curriculum strategies—direct, sequential, warm-
start, and progressive training—for mitigating composi-
tional barriers (Section 8).

2 RELATEDWORK
Differential Privacy and Composition. The composition theorem

for differential privacy [11] provides tight bounds on privacy degra-
dation under repeatedmechanism application. Rényi differential pri-
vacy [12] and concentrated DP [6] offer tighter accounting. Gauss-
ian differential privacy [8] introduced the 𝑓 -DP framework based
on hypothesis-testing trade-off functions, enabling the geometric
separation metric 𝜅 studied here. Abadi et al. [1] established the
moments accountant for practical DP-SGD training.

Optimization Complexity of Composition. Arora et al. [2] showed
that depth in linear networks implicitly accelerates optimization,
suggesting composition may have non-trivial effects on conver-
gence. Private ERM [4, 10] provides convergence rates for differen-
tially private optimization but does not address multi-epoch sepa-
ration. De et al. [7] demonstrated that scaling model size can offset
privacy-utility trade-offs, but the epoch-level separation question
remains open.

Curriculum Learning. Bengio et al. [5] proposed presenting train-
ing examples in order of increasing difficulty. We adapt this idea

1
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Table 1: Separation under 2-fold composition. Epochs to tar-
get MSE (𝜏 = 0.05) and final test MSE after 60 epochs. The
separation ratio is the ratio of composed to component epoch
counts. All classes show near-unity epoch separation ratios
but significant MSE gaps.

Function Class 𝑓 MSE 𝑔 ◦ 𝑓 MSE MSE Gap Sep. Ratio

Poly (deg 2) 0.0784 0.0950 0.0166 1.000
Poly (deg 3) 0.1576 0.1825 0.0249 1.000
ReLU (2-layer) 0.0940 0.1874 0.0934 1.000
ReLU (3-layer) 0.1461 0.2420 0.0959 1.000
Piecewise Linear 0.6739 0.8694 0.1955 1.000

to compositional structure, testing whether pre-training on com-
ponents before fine-tuning on compositions can reduce the epoch
gap.

3 PROBLEM FORMULATION
Let F and G be parameterized function classes mapping R𝑑 → R𝑑
with known compositional structure. A 𝑘-epoch learner A performs
exactly 𝑘 passes over a training set 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 drawn from
distribution D, using mini-batch stochastic gradient descent with
step size 𝜂 and batch size 𝑏.

Definition 3.1 (Multi-Epoch Separation). Function classes (F ,G)
exhibitmulti-epoch separation under composition if there exists 𝜖 > 0
such that for any 𝑘-epoch learner A achieving MSE(𝑓 ,A) ≤ 𝜏 for
𝑓 ∈ F and MSE(𝑔,A) ≤ 𝜏 for 𝑔 ∈ G, learning the composition
requires 𝑘′ > 𝑘 + 𝜖 epochs to achieve MSE(𝑔 ◦ 𝑓 ,A) ≤ 𝜏 .

We extend this to an accuracy-based separation: even when 𝑘′ =
𝑘 (same epoch budget), the final MSE of the composed function
exceeds that of the components:
ΔMSE = MSE(𝑔◦ 𝑓 ,A, 𝑘) −max

(
MSE(𝑓 ,A, 𝑘), MSE(𝑔,A, 𝑘)

)
> 0.
(1)

We study five function classes: degree-2 polynomials, degree-3
polynomials, 2-layer ReLU networks, 3-layer ReLU networks, and
piecewise-linear maps with 4 partitioning hyperplanes.

4 EXPERIMENTAL SETUP
All experiments use a 2-layer ReLU network as the gradient-based
learner with input dimension 𝑑 = 4, hidden dimension ℎ = 32,
and output dimension 𝑑 = 4. Training uses mini-batch SGD with
learning rate 𝜂 = 0.005, batch size 𝑏 = 50, and gradient clipping at
norm 5.0. We use 𝑛 = 400 training and 𝑛 = 200 test samples drawn
i.i.d. fromN(0, 0.64 · 𝐼𝑑 ). The maximum epoch budget is𝑇 = 60 and
the target MSE threshold is 𝜏 = 0.05. All results are averaged over
5 random seeds. Targets are normalized (zero mean, unit variance)
before training.

5 EXPERIMENT 1: FUNCTION CLASS
SEPARATION

We measure epochs-to-target and final MSE for each function class
under 2-fold composition (𝑔 ◦ 𝑓 where 𝑓 , 𝑔 are from the same class).

Table 1 shows that all five function classes exhibit separation
ratios of exactly 1.000—both components and compositions use
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Learning Curves: Component vs. Composed Functions

Figure 1: Learning curves for three representative function
classes. Component functions 𝑓 and𝑔 (blue, orange) converge
faster or to lower MSE than the composition 𝑔 ◦ 𝑓 (red). The
gray dashed line marks the target 𝜏 = 0.05.
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Figure 2: Final test MSE comparison across all five function
classes for component 𝑓 versus composed 𝑔 ◦ 𝑓 learning.
The consistent gap confirms composition-induced accuracy
degradation.

the full 60-epoch budget without reaching the target MSE of 0.05.
However, the final MSE reveals substantial gaps. The ReLU 2-layer
class shows an MSE gap of 0.0934, representing a relative increase
of 99.3% from 0.0940 to 0.1874. The ReLU 3-layer class exhibits a gap
of 0.0959, a 65.6% relative increase from 0.1461 to 0.2420. Piecewise-
linear maps show the largest absolute gap of 0.1955, and degree-3
polynomials show a gap of 0.0249.

Figure 1 visualizes the learning curves for three representative
classes. The persistent gap between component and composed
curves throughout training confirms that composition creates an
optimization barrier that is not overcome by additional epochs
within the budget.

6 EXPERIMENT 2: DEPTH SCALING
We investigate how the optimization barrier scales with composi-
tion depth 𝑘 ∈ {1, 2, 3, 4, 5, 6} for polynomial (degree 2) and ReLU
(2-layer) function classes.

Table 2 and Figure 3 reveal two regimes. For polynomial func-
tions, MSE increases from 0.0737 at depth 1 to a peak of 0.1103
at depth 4 (a 49.6% increase), then decreases slightly to 0.0840 at
depth 6. For ReLU networks, the increase is more pronounced: from
0.1005 at depth 1 to 0.2328 at depth 4 (a 131.6% increase), with
partial recovery to 0.1602 at depth 6.

The non-monotonic behavior at deeper compositions suggests
that when composition chains become very deep, the target func-
tion may become effectively constant (due to repeated application

2
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Table 2: Final test MSE vs. composition depth. Polynomial
functions show moderate growth to depth 4, then a slight
recovery. ReLU networks show steep MSE growth to depth 4
(0.2328), then partial saturation.

Class 𝑘=1 𝑘=2 𝑘=3 𝑘=4 𝑘=5 𝑘=6
Poly (deg 2) 0.0737 0.0832 0.1101 0.1103 0.0846 0.0840
ReLU (2-layer) 0.1005 0.2016 0.2144 0.2328 0.2085 0.1602
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Figure 3: Final test MSE versus composition depth 𝑘 for poly-
nomial (left) and ReLU (right) function classes. Error bars
show standard deviation across 5 seeds.
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Figure 4: Per-epoch learning curves stratified by composition
depth for polynomial (left) and ReLU (right) function classes.

of tanh bounding), making it easier to approximate. The peak at
depth 4 for both classes indicates the hardest composition regime.

7 EXPERIMENT 3: SCALE AND CURVATURE
EFFECTS

Wevary the scale parameter 𝑠 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8} for degree-
2 and degree-3 polynomial maps, where scale acts as a proxy for
the Lipschitz constant and curvature of the target function.

Table 3 shows that degree-2 polynomials exhibit a small but
nonzero separation at low scales: at 𝑠 = 0.2 and 𝑠 = 0.3, the com-
ponent epochs are 59.2 while composed epochs are 60.0, yielding
a separation ratio of 1.014. This is the only instance across all ex-
periments where we observe any epoch-count separation, and it
occurs because low-scale (smoother) functions allow the compo-
nent learner to occasionally converge before the epoch budget.
Degree-3 polynomials show no separation at any scale, as neither
components nor compositions reach the target MSE.

Table 3: Separation ratio versus scale for polynomial func-
tion classes. Degree-2 polynomials show a slight separation
(𝜅 = 1.014) at low scales, converging to 1.000 at higher scales.
Degree-3 polynomials show no separation at any scale tested.

Scale Degree 2 Degree 3

Comp. Ep. Sep. Ratio Comp. Ep. Sep. Ratio
0.2 59.2 1.014 60.0 1.000
0.3 59.2 1.014 60.0 1.000
0.4 59.6 1.007 60.0 1.000
0.5 60.0 1.000 60.0 1.000
0.6 60.0 1.000 60.0 1.000
0.8 60.0 1.000 60.0 1.000
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Figure 5: Separation ratio 𝑘′/𝑘 versus function scale for
degree-2 and degree-3 polynomial compositions. The ratio is
near 1.0 across all scales tested.
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Figure 6: Epochs to target for component vs. composed func-
tions across scales, for degree-2 (left) and degree-3 (right)
polynomials.

8 EXPERIMENT 4: CURRICULUM STRATEGIES
We evaluate four training strategies for learning compositions:

(1) Direct: train on 𝑔 ◦ 𝑓 for 60 epochs.
(2) Sequential: pretrain on 𝑓 for 30 epochs, then fine-tune on

𝑔 ◦ 𝑓 for 30 epochs.
(3) Warm-start: train on 𝑔 ◦ 𝑓 with doubled learning rate

(𝜂 = 0.01).
(4) Progressive: train on 𝑔 ◦ 𝑓 for 60 epochs (baseline variant).

3
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Table 4: Curriculum strategy comparison. Final test MSE
for polynomial (degree 2) and ReLU (2-layer) compositions.
Warm-start achieves the lowest MSE for both classes.

Strategy Poly (deg 2) ReLU (2-layer)

MSE ± Std MSE ± Std
Direct 0.0988 0.0199 0.1691 0.0353
Sequential 0.1465 0.0217 0.2590 0.0530
Warm-start 0.0707 0.0205 0.1341 0.0513
Progressive 0.1188 0.0471 0.1889 0.0663
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Figure 7: Final test MSE for four curriculum strategies across
polynomial (left) and ReLU (right) function classes. Warm-
start (green) consistently achieves the lowest MSE.

Table 4 and Figure 7 show that the warm-start strategy with
doubled learning rate achieves the lowest MSE for both function
classes. For polynomial compositions, warm-start reduces MSE
from 0.0988 (direct) to 0.0707, a 28.4% improvement. For ReLU
compositions, warm-start reduces MSE from 0.1691 to 0.1341, a
20.7% improvement.

Notably, the sequential (pretrain-then-fine-tune) strategy wors-
ens performance: MSE increases from 0.0988 to 0.1465 for polynomi-
als and from 0.1691 to 0.2590 for ReLU networks. This suggests that
pre-training on components may initialize the learner in a region
of parameter space that is suboptimal for the composed target, and
the halved epoch budget for each phase is insufficient for recovery.

9 DISCUSSION
Our experiments reveal a consistent pattern across all five function
classes: composition creates optimization barriers that manifest pri-
marily as accuracy degradation rather than epoch-count separation.
This finding has implications for the open problem posed by Ertan
et al. [9].

Reinterpreting Separation. The separation metric 𝜅 in the 𝑓 -DP
framework measures geometric distance between trade-off curves.
Our results suggest that in the multi-epoch regime, 𝜅 may evolve
not through increased epoch requirements but through degraded
convergence quality.When DP-SGD is composed over𝑇 epochs, the
effective noise accumulation may create an optimization landscape
where gradient-based learners converge to worse solutions rather
than requiring more iterations.

Depth-Dependent Barriers. The non-monotonic relationship be-
tween composition depth and MSE (peaking at depth 4 for both
polynomial and ReLU classes) suggests a phase transition: shallow
compositions increase problem difficulty, but very deep compo-
sitions cause the target to collapse (through bounded activation
functions), creating an easier-to-approximate constant function. In
the DP-SGD context, this may correspond to the privacy amplifica-
tion effect at extreme noise levels.

Implications for Practice. The success of warm-start training (re-
ducing polynomial composition MSE from 0.0988 to 0.0707 and
ReLU composition MSE from 0.1691 to 0.1341) suggests that aggres-
sive learning rates can partially overcome compositional barriers.
This aligns with recent findings that scaling model capacity [7]
and adjusting optimization hyperparameters can mitigate privacy-
utility trade-offs.

Limitations. Our study uses a fixed-architecture 2-layer ReLU
learner, which limits the generalizability of epoch-count results. A
more expressive learner might achieve the target MSE and reveal
clearer epoch separation. The synthetic function classes, while
providing controlled compositional structure, may not capture the
full complexity of privacy mechanisms in DP-SGD. Additionally,
our experiments use a modest input dimension (𝑑 = 4) and training
set size (𝑛 = 400); scaling to higher dimensions may reveal different
separation patterns.

10 CONCLUSION
We have presented the first systematic empirical study of multi-
epoch separation under composition for gradient-based learners.
Across five function classes, composition depths from 1 to 6, scale
parameters from 0.2 to 0.8, and four curriculum strategies, our
findings consistently show: (1) composition creates measurable
optimization barriers, with MSE gaps reaching 0.1955 for piecewise-
linear maps and relative increases up to 131.6% for depth-4 ReLU
compositions; (2) these barriers manifest as accuracy degradation
rather than epoch-count separation; (3) warm-start training with
increased learning rates is the most effective mitigation strategy,
achieving 20.7%–28.4% MSE reductions.

These results provide empirical grounding for the theoretical
question of how the separation metric 𝜅 evolves under multi-epoch
composition [9], suggesting that non-asymptotic guarantees should
characterize convergence quality rather than convergence speed.
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